79 research outputs found

    Turbulent channel flow of dense suspensions of neutrally-buoyant spheres

    Full text link
    Dense particle suspensions are widely encountered in many applications and in environmental flows. While many previous studies investigate their rheological properties in laminar flows, little is known on the behaviour of these suspensions in the turbulent/inertial regime. The present study aims to fill this gap by investigating the turbulent flow of a Newtonian fluid laden with solid neutrally-buoyant spheres at relatively high volume fractions in a plane channel. Direct Numerical Simulation are performed in the range of volume fractions Phi=0-0.2 with an Immersed Boundary Method used to account for the dispersed phase. The results show that the mean velocity profiles are significantly altered by the presence of a solid phase with a decrease of the von Karman constant in the log-law. The overall drag is found to increase with the volume fraction, more than one would expect just considering the increase of the system viscosity due to the presence of the particles. At the highest volume fraction here investigated, Phi=0.2, the velocity fluctuation intensities and the Reynolds shear stress are found to decrease. The analysis of the mean momentum balance shows that the particle-induced stresses govern the dynamics at high Phi and are the main responsible of the overall drag increase. In the dense limit, we therefore find a decrease of the turbulence activity and a growth of the particle induced stress, where the latter dominates for the Reynolds numbers considered here.Comment: Journal of Fluid Mechanics, 201

    Simulation of slug propagation for by-pass pigging in two-phase stratified pipe flow

    Get PDF
    The present paper is focused on the development of an accurate 1D numerical model for pig motion in two-phase flow. The focus will be on the liquid slug that is accumulated in front of the pig, the so-called pig-generated slug. Under the assumption of a stratified flow, we first discuss the academic case of liquid slug accumulation where we neglect the viscosity of the fluids. The size of the liquid slug will then effectively be determined by the speed of the hydrostatic wave which runs ahead of the pig. We also consider the more realistic case which includes the viscosity of the fluid. Finally, we discuss the effect of the presence of a by-pass in the pig on the accumulated liquid slug

    Assessment of numerical methods for fully resolved simulations of particle-laden turbulent flows

    Get PDF
    This work was granted access to the HPC resources of CALMIP and the National Center for Atmospheric Researchs (NCAR) supercomputing centers. P. Costa acknowledges the funding from the Portuguese Foundation for Science and Technology under grant no. SFRH/BD/85501/2012. L.-P. Wang acknowledges the funding from the U.S. National Science Foundation (NSF) under grants CBET-1706130.Peer reviewedPostprin

    Permanent tooth agenesis in non-syndromic Robin sequence and cleft palate: prevalence and patterns

    Get PDF
    Objectives: Partial tooth agenesis is frequently observed in Robin sequence. Tooth anomalies are increasingly considered as an extended phenotype of the cleft palate population. The study objective was to compare the prevalence and patterns of tooth agenesis in a group of patients with non-syndromic Robin sequence (ns-RS) and a group with non-syndromic cleft palate (ns-CP). Materials and methods: The panoramic radiographs of 115 ns-RS and 191 ns-CP patients were assessed for agenesis of the permanent dentition (excluding third molars) and the patterns recorded using the Tooth Agenesis Code. Results: Partial tooth agenesis was observed in 47.8% of ns-RS and 29.8% of ns-CP patients with a greater prevalence in the mandibula than in the maxilla, particularly in ns-RS. The teeth most frequently absent in both groups were the mandibular second premolars and maxillary lateral incisors. Tooth agenesis was bilateral in two-thirds of affected ns-RS patients and one-half of ns-CP patients. In ns-RS, bilateral agenesis of the mandibular second premolars was more frequently observed in female than that in male patients. Completely symmetrical patterns of hypodontia were found in around 45% of ns-RS patients with tooth agenesis compared to 35% in ns-CP. No association was found between the extent of the palatal cleft and the severity of hypodontia. Conclusion: Tooth agenesis is more prevalent in ns-RS than that in ns-CP, demonstrates a much greater predilection for the mandible in ns-RS, and bears no relation to the extent of the palatal cleft. Clinical relevance: When compared to ns-CP, additional developmental disturbances are likely involved in the etiology of tooth agenesis in ns-RS. Future research could help identify the underlying genetic traits and aid in classifying patients in those with and without expected tooth agenesis in order to facilitate orthodontic management strategies

    On the Tropical Atlantic SST warm bias in the Kiel Climate Model

    Get PDF
    Most of the current coupled general circulation models show a strong warm bias in the eastern Tropical Atlantic. In this paper, various sensitivity experiments with the Kiel Climate Model (KCM) are described. A largely reduced warm bias and an improved seasonal cycle in the eastern Tropical Atlantic are simulated in one particular version of KCM. By comparing the stable and well-tested standard version with the sensitivity experiments and the modified version, mechanisms contributing to the reduction of the eastern Atlantic warm bias are identified and compared to what has been proposed in literature. The error in the spring and early summer zonal winds associated with erroneous zonal precipitation seems to be the key mechanism, and large-scale coupled ocean-atmosphere feedbacks play an important role in reducing the warm bias. Improved winds in boreal spring cause the summer cooling in the eastern Tropical Atlantic (ETA) via shoaling of the thermocline and increased upwelling, and hence reduced sea surface temperature (SST). Reduced SSTs in the summer suppress convection and favor the development of low-level cloud cover in the ETA region. Subsurface ocean structure is shown to be improved, and potentially influences the development of the bias. The strong warm bias along the southeastern coastline is related to underestimation of low-level cloud cover and the associated overestimation of surface shortwave radiation in the same region. Therefore, in addition to the primarily wind forced response at the equator both changes in surface shortwave radiation and outgoing longwave radiation contribute significantly to reduction of the warm bias from summer to fall
    • 

    corecore