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ABSTRACT 
 
The present paper is focused on the development of an accurate 1D numerical model for 
pig motion in two-phase flow. The focus will be on the liquid slug that is accumulated in 
front of the pig, the so-called pig-generated slug. Under the assumption of a stratified flow, 
we first discuss the academic case of liquid slug accumulation where we neglect the 
viscosity of the fluids. The size of the liquid slug will then effectively be determined by 
the speed of the hydrostatic wave which runs ahead of the pig. We also consider the more 
realistic case which includes the viscosity of the fluid. Finally, we discuss the effect of the 
presence of a by-pass in the pig on the accumulated liquid slug. 
 
 
1 INTRODUCTION 
 
Several efforts have been made in the past to model the trajectory of a pig, which is 
propelled by the fluids in a pipeline. These efforts often rely on a 1D cross-sectional 
description of the fluid, while the pig is modelled as a point mass. The reason for this 
simplified approach is the high aspect ratio of the problem, which leads to an approach in 
which only considers variations in the direction of the curvilinear coordinate that runs 
along the pipeline.  
 
Kohda et al. [1] were among the first to present a numerical method for the motion of a pig 
in two-phase pipe flow. A separate coordinate system is used for the pig and the fluid. 
Their simulation results appeared to be in good agreement with experimental data. 
However, no details were provided on how the two used coordinate systems are coupled. 
The incorporation of a by-pass in the pig body using a 1D transient single-phase pigging 
model has been proposed by Nguyen et al. [2], who employed a method of characteristics 
(MOC) to solve the hyperbolic partial differential equations. Esmaeilzadeh et al. [3] used 
a MOC approach to model pig motion in a single-phase pipeline, while comparing the 
modeling results to field data. Nieckele et al. [4] and Hosseinalipour et al. [5] used a finite 
difference technique to model the motion of a by-pass pig in a single-phase pipeline. Both 
studies address the necessity of regridding of the numerical grid by using an adaptive mesh 
as the pig moves through the pipe, but it is not clear whether the approaches are mass 
conservative. Most of the studies for 1D pig modelling in a pipeline focus on single-phase 
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flow, only a few consider the presence of a second phase [1, 6, 7, 8]. Among these studies 
that considered two-phase flow, only pigs without by-pass are considered. 
    
The present paper describes the development of an accurate 1D numerical method to solve 
the motion of a pig with and without by-pass in a two-phase pipeline. The pig is 
implemented as a moving border of the numerical grid on which the two-fluid model is 
solved using a finite-volume method. The two-fluid model that is used is described in detail 
in [9]. However, in that work only test cases with periodic boundary conditions have been 
discussed. This is clearly not applicable for monitoring the trajectory of a pig through a 
pipeline: we will need appropriate boundary conditions at the inlet and outlet of the pipe. 
We propose the use of characteristic boundary conditions [10, 11]. A similar approach is 
used to handle the boundary conditions on both sides of the pig. As the pig traverses 
through the pipe, it is necessary to regrid the finite volumes around the pig, to ensure that 
the finite-volume sizes do neither get too large nor too small.  
 
The structure of the paper is as follows. The numerical method covering the discretization 
and boundary treatment is discussed in section 2. The results from the two test cases are 
discussed in section 3. Section 4 gives conclusions and discusses possibilities for further 
research. 
 
 
2 NUMERICAL METHOD 
 
The two-fluid model which is used to model the simultaneous transport of a liquid phase 
and gaseous phase through a pipeline is described in [9, 20]. This two-fluid model assumes 
a 1D stratified two-phase flow in a pipe. The two-fluid mass and momentum equations 
read: 
 డడ௧ ൫ߩܣ൯ � డడ௦ ൫ߩݑܣ൯ �ൌ Ͳǡ                                                                                              (1) 
 డడ௧ ሺߩܣሻ � డడ௦ ሺߩݑܣሻ �ൌ Ͳǡ                                                                                              (2) 
 డడ௧ ൫ߩݑܣ൯ � డడ௦ ൫ߩݑଶܣ൯ �ൌ െ డడ௦ ܣ �డுீడ௦  ሺെ߬ ܲ െ �߬ ܲሻǡ                          (3) 
 డడ௧ ሺߩܣሻ � డడ௦ ൫ߩݑଶܣ൯ �ൌ െడడ௦ ܣ  �డுீడ௦  ൫߬ ܲ െ�߬ ܲ൯Ǥ                                          (4) 
 
Here ܣ and ܣ�represent the hold-up of the gas and the liquid phase, respectively. The gas 
and liquid hold-up make up the total pipe areaǣܣ� ൌ ܣ   . The phase velocities for theܣ
gas and the liquid are respectively denoted as ݑ andݑ�. The density of the liquid, ߩ, is 
taken constant, whereas the density of the gas, ߩ ൌ  ሻ, is given by the ideal gas lawሺߩ�
[9]. Here p is the pressure. ܩܪ and ܩܪ denote the hydraulic gradient terms, which are 
given in [9]. The last two terms of equation (3) and equation (4) represent an expression 
for the interfacial friction and wall friction. The shear stress of the gas with the pipe wall 
is denoted as  ߬ and the shear stress of the liquid with the pipe wall is denoted as�߬. They 
are expressed by the Fanning friction factor, which is calculated using the Churchill 
relation, see [9, 12]. The interfacial shear stress ߬ is calculated according to [13].  ܲ and ܲ denote the wetted perimeters, whereas ܲ represents the length of the interface which 
separates the gas phase from the liquid phase [9]. The friction terms do not include 
derivatives of unknown quantities and are identified as the source terms ܵ and�ܵ: 
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 ܵ �ൌ െ߬ ܲ െ �߬ ܲ�ǡ                                                                                                        (6) 
 ܵ �ൌ � ߬ ܲ െ�߬ ܲ Ǥ                                                                                                            (7) 
 
2.1 Spatial discretization 
 
The two-fluid model (equations (1) ± (4)) is discretized using the finite-volume method on 
a staggered grid, see figure 1. The pig is incorporated as a moving border of a finite volume. 
As a consequence, the discretization of the equations on the finite volumes adjacent to the 
pig needs to be adjusted. The pig here moves from left to right as a result of a gas and 
liquid mass influx at the left boundary, which are denoted as ܯሶ and ܯሶ , respectively. The 
right boundary consists of a pressure outlet condition�௨௧. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 1: Staggered grid layout incorporating the presence of a pig. 
 
The discretization of the mass and momentum equations on finite volumes which lay in 
the interior of the domain (and thus have no moving boundaries), such as ȳ and ȳାଵȀଶ௨  
as shown in figure 1, is as follows [9]: 
ݐ݀݀  ൫ߩఉȳఉ൯  ൫ߩఉܣఉ൯ାଵଶݑఉǡାଵଶ െ�൫ߩఉܣఉ൯ିଵଶݑఉǡିଵଶ ൌ Ͳǡ����������������������������������������������������ሺͺሻ ��                                   ݀݀ݐ ൫ߩఉݑఉȳఉ൯ାଵȀଶ  ൫ߩఉܣఉݑఉଶ൯ାଵ െ �൫ߩఉܣఉݑఉଶ൯ ൌ����������������������������������������������������������� ����������������������������������������������������െܣ�ఉǡାభమ�ሺାଵ െ ሻ  ሺܩܪఉǡାଵ െ ఉǡሻܩܪ�  ܵఉǡାభమǡ��������ሺͻሻ�
        
where 
 ȳఉǡ ൌ  ఉǡο�୧Ǥ������������������������������������������������������������������������������������������������������������������������������ሺͳͲሻܣ�
                                                                                                                     
Here οݏ ൌ � ሺݏାଵȀଶ െ  ିଵȀଶ�ሻ is the length of the finite volume. We now focus on theݏ�
discretization of the finite volumes adjacent to the pig, such as ȳିଵ  and�ȳିଷȀଶ௨ . For the 
moment we assume that no by-pass is present in the pig body. As a result, the discretization 
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of the convective term results in a zero contribution from the left cell face of the finite 
volume. The spatial discretization of the mass equation for phase ߚ (where ߚ = g represents 
gas, and ߚ = l represents liquid) on ȳିଵ  then reads: 
ݐ݀݀  ൫ߩఉȳఉ൯ିଵ  ൫ߩఉܣఉ൯ିଵଶݑఉǡିଵଶ ൌ ͲǤ�����������������������������������������������������������������������������������ሺͳͳሻ 
                                                                         
Here ȳఉǡିଵ is a function of time. Similarly, the discretization of the momentum equation 
on the finite volume ȳିଷȀଶ௨  reads: 
ݐ݀݀  ൫ߩఉݑఉȳఉ൯ିଷଶ  ൫ߩఉܣఉ൯ିଵݑఉǡିଵଶ ൌ������������������������������������������������������������������������������������������� 
 �����������������������������������െܣ�ఉǡିయమ�ሺିଵ െ ିଶሻ  ሺܩܪఉǡିଵ െ ఉǡିଶሻܩܪ�  ܵఉǡିయమǤ��������������ሺͳʹሻ
                
The discretization of the finite volumes which are located on the left side of the pig are 
adjusted in a similar way. 
 
2.2 Regridding 
 
As the pig traverses through the pipe, the finite volume in front of the pig will reduce in 
size and the finite volume at the back of the pig will increase in size. We solve our system 
of equations in conservative form, which means that we solve for the total mass ܷ௦௦ǡ ൌߩఉǡȳ and for the total momentum�ܷǡାଵȀଶ ൌ ൫ߩఉݑఉȳఉ൯ାଵȀଶ. Since the size of the 
finite volume is part of the conservative variable ܷ௦௦ǡ and�ܷ௦௦ǡାଵȀଶ, the change of 
the size of the finite volume due to the motion of the pig is naturally captured. The pig 
PRWLRQ�LV�VROYHG�E\�DSSO\LQJ�1HZWRQ¶V�VHFRQG�ODZ��7KH�SLJ�SRVLWLRn and pig velocity are 
appended to the vector of unknowns which contains�ܷ௦௦ǡ and ܷ ǡାଵȀଶ for each finite 
volume. The resulting system of equations is solved in a monolithic fashion. Since the pig 
position and pig velocity are part of the solution, there always exists a mapping of ܷ to 
the primitive variables ݑఉǡǡ ߩఉǡ andܣ�ఉǡ. 
 
As a result of the current approach, the finite volume in front of the pig will at some point 
become too small, whereas the finite volume at the back of the pig will become too large. 
Therefore, the grid has to be regularly regenerated as the pig traverses through the pipe. 
We perform the grid regeneration as follows. When the finite-volume cell in front of the 
pig gets smaller than half the size of a cell as found in the interior, it will be merged with 
its neighbouring cell. Similarly, if the cell at the back of the pig becomes larger than 1.5 
the size of a cell as found in the interior, it will be split up in two cells, see figure 2. The 
conservative variable ܷ  will be reconstructed accordingly. The mass ܷ ௦௦ǡכ  of the volume 
in front of the pig after regeneration is determined by the sum of the masses of the cells 
before merging: 
 ܷ௦௦ǡାଵכ ൌ ܷ௦௦ǡ�  �ܷ௦௦ǡାଵ�Ǥ�������������������������������������������������������������������������������������������ሺͳ͵ሻ 
 
The mass of the cells at the back of the pig is distributed proportionally to the size of the 
newly created cells: 
 ܷ௦௦ǡିଵכ ൌ ο�ିଵכ ܷ௦௦ǡିଵοݏିଵ ǡ�����������������������������������������������������������������������������������������������������ሺͳͶሻ 
   

320 © BHR Group  MPT2019



ܷ௦௦ǡכ ൌ οݏܷכ௦௦ǡିଵοݏିଵ Ǥ������������������������������������������������������������������������������������������������������������ሺͳͷሻ 
 
The approach is mass conservative, as�οݏିଵכ  �οݏכ ൌ οݏ. The merging and splitting of 
momentum cells ܷǡାଵȀଶ is performed in the same way. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2: Grid regeneration. (a) Grid before regeneration. (b) Grid after 
regeneration. 
 
We integrate the system of equations in time using the second order BDF2 scheme [9]. 
Before performing a new time step, the grid is regenerated if necessary. As a result of the 
regridding procedure as described above, we do not have the solution at the previous time 
step which exists on the new grid. We therefore change the time integration scheme to 
Backward Euler for the first time step after regridding for all unknowns, as BDF2 cannot 
be used since it needs the solution at the previous time step. After having performed the 
first time step following a regridding procedure, we switch back to the higher order BDF2 
scheme. 
 
2.3 Boundary conditions 
 
Boundary conditions are implemented using a characteristic boundary treatment [10, 11]. 
We first write equation (1)-(4) at a boundary point in vector form: 
ݐ߲ࢁ߲   ݏ߲ࡲ߲  ࡰ ݏ߲ࢃ߲ ൌ  Ǥ�����������������������������������������������������������������������������������������������������������ሺͳሻࡿ
          
Here ܷ ൌ � ሾߩܣǡ ǡܣߩ ǡܣݑߩ  ሿ் is the vector containing the conserved variablesܣݑߩ
and ܹ ൌ� ሾܣǡ ǡ ǡݑ  ሿ் contains the primitive variables. The source terms ܵ and ܵ areݑ
collected in the vector�ܵ ൌ ൣͲǡͲǡ ܵǡ ܵ൧். We have collected the conservative flux 
contributions into the second term of equation (16). Here ࡲ�is given by: 
 

ێێێۏ = ࡲ
ۍ ܣଶݑߩܣݑߩܣݑߩ െ ܣଶݑߩܩܪ െ ܩܪ ۑۑے

                              Ǥ���������������������������������������������������������������������������������������������������������������ሺͳሻېۑ
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The non-conservative flux contributions are collected into the third term of equation (16). 
Here ܦ is given by: 
 

ࡰ ൌ� ൦Ͳ Ͳ Ͳ ͲͲ Ͳ Ͳ ͲͲ ܣ Ͳ ͲͲ ܣ Ͳ Ͳ൪Ǥ��������������������������������������������������������������������������������������������������������������ሺͳͺሻ 
 
We now put equation (16) in quasi-linear form by defining Jacobian matrix  ൌ డࢁడࢃ 

andࡶ� ൌ డࡲడࢃ:  
  ݐ߲ࢃ߲  ࡶ ݏ߲ࢃ߲  ࡰ ݏ߲ࢃ߲ ൌ � ݐ݀ࢃ݀   ݏ߲ࢃ߲ ൌ  Ǥ���������������������������������������������������������ሺͳͻሻࡿ
 
Here� ൌ ࡶ   :, and is given as followsࡰ
 

 ൌ �
ێێۏ
ێێێ
ۍێ െݑߩ ݑܣ ߲ߩ߲ � ߩܣ Ͳݑߩ Ͳ Ͳ ߩଶݑെߩܣ െ ܣ߲ܩܪ߲ ܣ ቆݑଶ ߲ߩ߲  ͳቇ െ ߲ܩܪ߲ ߩݑܣʹ Ͳ
െݑଶߩ െ ܣ߲ܩܪ߲ ܣ Ͳ ۑۑےߩݑܣʹ

ۑۑۑ
 Ǥ��������������ሺʹͲሻېۑ

 
We now multiply equation (19) with ି to obtain: 
ݐ߲ࢃ߲   ݏ߲ࢃ߲ࡽ ൌ  Ǥ�����������������������������������������������������������������������������������������������������������������ሺʹͳሻ܁ି
 
Here ࡽ ൌ  : is given byିଵ
 

ࡽ ൌ�
ێێۏ
ێێێ
ێێێ
ۍێ ݑ Ͳ Ͳ െܣ ݑሺߩ െ ܣሻݑ ߲ߩ߲ ݑ ߲ߩ߲ߩ ܣߩܣ ߲ߩ߲

െ ߩܣܣ߲ܩܪ߲ ܣ െ� ߩܣ߲ܩܪ߲ ݑ Ͳ
െ ߩܣܣ߲ܩܪ߲ ͳߩ Ͳ ݑ ۑۑے

ۑۑۑ
ۑۑۑ
ېۑ
Ǥ�����������������������������������������������������ሺʹʹሻ 

 
To derive characteristic equations, from which time dependent equations for the boundary 
points can be obtained, we determine the eigendecomposition ofࡽ� ൌ  . Here ିࡾࡾ
contains the eigenvalues ሾߣଵǡ ଶǡߣ ଷǡߣ ସሿ்ߣ  on the diagonal and ࡾ contains the right 
eigenvectors ofࡽ�: 
ݐ߲ࢃ߲   ଵିࡾࡾ ݏ߲ࢃ߲ ൌ  Ǥ�������������������������������������������������������������������������������������������������������ሺʹ͵ሻ܁ିଵ
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The eigenvalues and eigenvectors can be computed analytically with the help of a 
computer algebra system. However, the expressions which are obtained are long, so we 
will not reproduce them here. Now we define the vector ࡸ ൌ ିࡾଵ డࢃడ௦  and rewrite equation 
(23) as follows: 
ݐ߲ࢃ߲   ۺࡾ ൌ  Ǥ�����������������������������������������������������������������������������������������������������������������������ሺʹͶሻ܁ିଵ
 
Here the components of ࡸ ൌ ሾܮଵǡ ଶǡܮ ଷǡܮ  ସሿ் are associated to theܮ
eigenvalues�ሾߣଵǡ ଶǡߣ ଷǡߣ  ,ସሿ். The four eigenvalues of the compressible two-fluid modelߣ
assuming subsonic flow, contain one negative and one positive eigenvalue close to the 
speed of sound, say ߣଵ andߣ�ସ, respectively. The magnitude of the other two eigenvalues, ߣଶ andߣ�ଷ, are in the order of the phase velocities and their sign depends on the local flow 
conditions [9, 14]. We thus consider the following three possibilities:ߣ�ଶ and ߣଷ are both 
positive, ߣଶ and ߣଷ are both negative, and ߣଶ is negative while ߣଷ is positive. We use the 
sign of the eigenvalues to determine the number of incoming and outgoing waves at the 
boundary. By solving equation (24) we can then formulate time dependent equations for 
the solution at the boundary points. For example, we consider the right boundary point, 
which corresponds to the outlet of the domain for the cases considered in this work. Figure 
3 shows the grid layout near the right boundary point.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3: Schematic of the grid layout near the right boundary point. 
 
The eigenvalues can be calculated at the boundary point as function of the current solution 
at the boundary point. A possible outcome could be that ߣଶ and ߣଷ are both positive, which 
would imply that we have three positive eigenvalues and one negative eigenvalue (since ߣଵ and ߣସ are negative and positive respectively). Since we consider the right boundary, 
three positive eigenvalues correspond to three outgoing waves. This means that the 
componentsܮ�ଶ, ܮଷ and ܮସ of vector ࡸ which feature డࢃడ௦ �can be calculated by using finite 
differences which are evaluated using the interior of the domain. ܮଵ should not be 
calculated in this case, since it corresponds to an incoming wave, and no information is 
available in the interior of the domain. Instead information should be given by supplying 
an appropriate boundary condition by providing an expression for one of the entries in the 
vector�డࢃడ௧ . A typical boundary condition for an outlet used in this work is an outlet 
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condition for the pressure. A constant outlet pressure corresponds to�డడ௧ ൌ Ͳ. Equation (24) 
can now be completely solved since we have 4 unknowns (ܮଵ and the remaining three 
unknown entries of vector�డࢃడ௧ ) and 4 equations. The result is an expression for the full 

vector డࢃడ௧  at the boundary point, which can be integrated together with the interior using 
the BDF2 scheme. For the left boundary of the domain and the pig boundaries we employ 
the same technique. For the pig boundaries this results in a boundary condition for the fluid 
velocity from which the liquid hold-up and pressure can be calculated. For some boundary 
conditions it may be more convenient to express the boundary equations in terms of 
conserved variables ࢁ instead of primitive variablesࢃ�. For example, at the inlet of the 
domain one would rather supply boundary conditions in terms of the gas and liquid mass 
inflow than in terms of gas and liquid velocity. To derive boundary equations in terms 
ofࢁ�, equation (24) is multiplied by the Jacobian�. 
 
 
3 TEST CASES 
 
In this section we discuss two test cases which were performed using the method described 
in the previous section. In these test cases we focus on the liquid slug that is accumulated 
in front of the pig, see figure 4. In describing the liquid slug we make use of the definition 
of the liquid hold-up fraction: 
ߙ  ൌܣ�ܣ Ǥ������������������������������������������������������������������������������������������������������������������������������������������ሺʹͷሻ 
 
 
 
 
 
 
 
 
Figure 4: Schematic of liquid slug accumulation in front of a moving pig. 
 
Due to the movement of the pig an increased liquid hold-up fraction ߙ௦ exists in this pig- 
generated slug when compared to the hold-up fraction further downstream, which we 
denote asߙ�. We also define the velocity of the transient that travels ahead of the 
pig,� ܸ௧. This front separates two regions: the region downstream of the front, where 
the flow is still unaffected by the pig motion, and the region upstream of the front where 
the flow is affected as a result of the pig motion. We first discuss a test case which considers 
a pig without by-pass. We then move to a test case for pigs with by-pass. 
     
3.1 Pig-generated slug for pigs without by-pass 
 
As a first step in understanding the liquid slug which is propelled by a pig in two-phase 
stratified pipe flow, we assume inviscid flow and a preset pig velocity. In addition, we 
neglect the pressure gradient�డడ௦ , which means that we only consider pressure variations 
due to the hydraulic gradient term. We can then simplify the liquid mass equation (2) and 
the liquid momentum equation (4). When applying a mass and momentum balance over 
the liquid front in a reference frame that moves with the liquid front we can then write the 
following steady-state balance: 
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 ൫ ܸ െ ܸ௧൯ߙ௦ܣ ൌ ൫െ ܸ௧൯ߙܣǡ������������������������������������������������������������������������������������ሺʹሻ  
 ൫ ܸ െ ܸ௧൯ଶߙ௦ܣ� െ ǡఈୀఈೞܩܪ �ൌ ൫െ ܸ௧൯ଶߙܣ െ   ǡఈୀఈబǤ����������������������������������ሺʹሻܩܪ
 
Here ܩܪǡఈୀఈೞ�is the hydraulic gradient term evaluated in the slug region in front of the 
pig, whereas ܩܪǡఈୀఈబ�is the hydraulic gradient term evaluated downstream of the liquid 
front. Inspecting equation (26) and (27) we identify two unknowns which characterize the 
pig-generated slug: ߙ௦ and� ܸ௧. We solve for ߙ௦ and� ܸ௧�and compare the result with 
numerical simulations of the full two-fluid model (equation (1)-(4)), see figure 5.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 5: Pig-generated slug for inviscid flow. (a) Initial condition at t = 0 s. The 
spatial coordinate s is normalized by the pipe diameter D. (b) Solution a t = 2 s. (c) 
Solution at t = 4 s. (d) ࢚࢘ࢌࢂ as function of the pig velocity. (e) ࢙ࢻ as function of the 
pig velocity.  
 
The simulations were carried out by considering a pipeline with initial hold-up of ߙ = 0.1, 
with the fluid being at rest. At time t = 0 s, a pig is inserted at s = 0 m, which is visible in 
figure 5a as a vertical black line. The pig is given a constant preset velocity� ܸ ൌ ͲǤͶ 
m/s, and as a result liquid is accumulated in front of the pig, see figure 5b/c. We use the 
properties of water for the liquid phase, whereas we use the properties of air for the gas 
phase. The time step is taken as ݀ݐ ൌ �ͲǤͲͲʹͷ s, whereas the number of volumes is 200. 
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The domain length is 4 m, which results in a mesh size of ݀ݏ ൌ 0.02 m. The other 
simulation parameters are summarized in table 1. 
 
Table 1: Simulation parameters. 

Parameter Value 
Liquid density ߩ 998 kg/m3 

Gas speed of sound ܿ 289 m/s 
Liquid viscosity ߤ 0.001 kg/(ms) 
Gas viscosity ߤ 0.0000181 kg/(ms) 
Pipe diameter 0.105 ܦ m 
Pipe wall roughness ߳ 0.000005 m 
Acceleration of gravity ݃ 9.8 m/s2 

Outlet pressure ௨௧ 100000 Pa 
 
From the simulation results ߙ௦ and� ܸ௧�can be extracted, see figure 5d/e in which the 
results for various pig velocities are summarized. A good agreement is found when 
comparing the simulation result to the theoretical solution for ߙ௦ and� ܸ௧, which is 
obtained from solving equations (26) and (27). 
 
As a next step we consider the same test case, but we include the viscosity of the fluid. The 
viscosity of the liquid phase will generate an increasing amount of friction with the pipe 
wall. As a result, the liquid hold-up ߙ௦ in the pig-generated slug keeps increasing until it 
hits the top of the pipe, see figure 6. For this simulation � ܸ ൌ ͳǤͲ�m/s. The time step is 
taken as ݀ݐ ൌ �ͲǤͲʹ s, whereas the number of volumes is 200. The domain length is 120 
m, which results in a mesh size of ݀ݏ ൌ 0.6 m. As a consequence of the liquid that hits the 
top of the pipe for pigs without by-pass, an initial full-bore liquid slug is formed, which 
finally can result in a large liquid surge that must be managed by the receiving facilities 
[19]. The use of a by-pass pig can help to smooth out the liquid surge [19]. This will be the 
topic of the next section.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 6: Pig-generated slug for viscous flow. (a) Solution at t = 5 s. (b) Solution at  
t = 55 s. (c) Solution at t = 94 s. 
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3.2 Pig-generated slug for pigs with by-pass 
 
The presence of a by-pass in the pig body has two effects on the pig-generated slug. First 
of all, a by-pass pig will a have lower travel velocity compared to a conventional pig. The 
steady-state velocity of a by-pass pig in a horizontal pipe can be expressed as follows [15, 
16]: 
 

ܸ ൌ ܸ௫ െ� ݀ଶܦଶ ௨ߩߩ ඨ ܭܨ ͳʹ ܣߩ Ǥ����������������������������������������������������������������������������������������ሺʹͺሻ 
 
Here ܸ௫ is the upstream mixture velocity, ݀ is the diameter of the by-pass hole, ߩ is 
the density of the fluid in the by-pass (which is taken as the downstream gas density),ߩ�௨ 
is the upstream density of the gas, ܨ is friction of the pig with the inner pipe wall, and ܭ is the pressure loss coefficient of the by-pass pig. We use the Idelchik relation to 
calculateܭ�, in which we assume single-phase gas flow around the by-pass pig [16-18]. 
The pig length for calculating ܭ is taken equal to two times the pipe diameterܦ�. 
Furthermore, we take a value of ܨ ൌ ͳͲ N. When the by-pass area fraction  ௗమమ goes to 
zero, one retrieves a pig velocity equal to the upstream mixture velocity. As a result of the 
lower pig velocity due to the by-pass, the liquid in front of the pig will also adopt a lower 
velocity.  
 
A second effect of the presence of a by-pass is that the gas that by-passes will result in a 
liquid hold-up  ߙ௦ in front of the pig, which is not equal to one, i.e. the liquid will not reach 
the top of the pipe. Instead, ߙ௦ will reach an equilibrium hold-up; see the results in figure 
7 for different by-pass ratios. As an initial condition the hold-up fraction has again been 
settled at 0.1, which was achieved by setting ܯሶ ൌ ͲǤͲͷͳ�kg/s and ܯሶ ൌ ͲǤͲͳͲ�kg/s at the 
inlet. We carried out a simulation for a pig with a by-pass area fraction of 0.02, which 
results in ܸ ൌ �ͲǤ͵Ͷʹ m/s (equation (28)). The time step is taken as ݀ݐ ൌ �ͲǤͶ s, 
whereas the number of volumes is 200. The domain length is 960 m, which results in a 
mesh size of ݀ݏ ൌ 4.8 m. All other simulation parameters are summarized in table 1. To 
avoid additional transients due to initial acceleration of the pig, we directly set the pig 
velocity equal to the steady-state pig velocity, as given by equation (28). The equilibrium 
hold-up ߙ௦ is extracted when the hold-up in front of the pig has settled to a steady-state 
value, see figure 7c.   
 
We now proceed to estimate ߙ௦ by a simplified model. We therefore again consider the 
region just downstream of the pig, whereߙ� ൌ  ௦. As a first step we aim to have anߙ
expression for the liquid and gas mass flow in this region, denoted ܯሶ ǡఈୀఈೞ andܯ�ሶǡఈୀఈೞ . 
As the liquid velocity has adopted the pig velocity, the ܯሶ ǡఈୀఈೞ  can be calculated as 
follows:    
ሶܯ  ǡఈୀఈೞ ൌ ߩ ܸߙ௦ܣǤ������������������������������������������������������������������������������������������������������������������ሺʹͻሻ 
 
The gas mass flow at this location is determined by the amount of gas that goes through 
the by-pass pig. It can be calculated by applying a mass balance: 
ሶǡఈୀఈೞܯ  ൌ ௨൫ߩ� ܸ௫ െ ܸ൯ܣǤ�����������������������������������������������������������������������������������������������ሺ͵Ͳሻ 
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We next use the steady-state limit of the momentum equations (3) and (4) where we neglect 
spatial derivatives (except for the pressure gradient), to derive the following point model: 
 ߬ ܲ ൬ ͳͳ െ ௦ߙ  ͳߙ௦൰ � ߬ ܲͳ െ ௦ߙ െ�߬ ܲߙ௦ ൌ ͲǤ�������������������������������������������������������������������������ሺ͵ͳሻ 
 
Here the shear stresses are a function of ߙ௦ as well as the gas and liquid mass flow, which 
are given by equation (29) and (30). As ߙ௦ is the only unknown in equation (31), it can be 
solved, see figure 7d. This simplified approach shows good agreement with the numerical 
simulations, which thus gives insight in characterizing the liquid slug which is propelled 
by a by-pass pig under the assumption of stratified flow conditions. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 7: Pig-generated slug for a by-pass pig. (a) Solution condition at t = 63 s. The 
by-pass area fraction is equal to 0.02. (b) Solution at t = 639 s. (c) Solution at t = 
2239 s. (d) ࢙ࢻ and pig velocity as a function of the by-pass area fraction.  
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4 CONCLUSIONS 
 
In this paper we have discussed the numerical implementation of the pig motion in 
stratified two-phase pipe flow using a mass conserving two-fluid model. The pig has been 
implemented as a moving border of a finite volume.  A new mass- and momentum-
conserving regridding strategy has been proposed and a new implementation of the 
boundary condition treatment has been realized. Test cases were used to characterize the 
liquid slug accumulation in front of the pig for both inviscid and viscous flow. The effect 
of a by-pass in the pig body on the liquid slug has been quantified. Good agreement 
between the simplified approach and the 1D transient simulations was found.  
 
The current study has been carried out assuming stratified flow. This assumption may not 
always hold, especially not for the flow just in front of the pig, which may depend on the 
details of the shape of the pig and of the by-pass holes. A 1D pipe flow model will in 
general not be able to predict the complex 3D flow close to the by-pass pig. Therefore, it 
is recommended to carry out two-phase CFD simulations to help developing reliable two-
phase correlations which characterize the flow just in front of the by-pass pig. The 
correlations will serve as input to the 1D model, such as the model presented in this study. 
The pig velocity in this study was given the preset steady-state velocity from the start of 
the simulation. A next step is to test if the assumptions of the simplified model will still 
hold when startup transients of the pig and the surrounding fluid are included in the full 
1D simulation.  
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