164,425 research outputs found

    SWEET11 and 15 as key players in seed filling in rice

    No full text

    Thermal rectifier from deformed carbon nanohorns

    Full text link
    We study thermal rectification in single-walled carbon nanohorns (SWNHs) by using non-equilibrium molecular dynamics (MD) method. It is found that the horns with the bigger top angles show larger asymmetric heat transport due to the larger structural gradient distribution. This kind of gradient behavior can be further adjusted by applying external strain on the SWNHs. After being carefully elongated along the axial direction, the thermal rectification in the elongated SWNHs can become more obvious than that in undeformed ones. The maximum rectification efficiency of SWNHs is much bigger than that of carbon nanotube intramolecular junctions.Comment: 3 figure

    Effect of iron on the microstructure and mechanical property of Al-Mg-Si-Mn and Al-Mg-Si diecast alloys

    Get PDF
    This article is made available through the Brunel Open Access Publishing Fund. Copyright @ 2012 Elsevier B.V.This article has been made available through the Brunel Open Access Publishing Fund.Al–Mg–Si based alloys can provide super ductility to satisfy the demands of thin wall castings in the application of automotive structure. In this work, the effect of iron on the microstructure and mechanical properties of the Al–Mg–Si diecast alloys with different Mn concentrations is investigated. The CALPHAD (acronym of Calculation of Phase Diagrams) modelling with the thermodynamic properties of the multi-component Al–Mg–Si–Mn–Fe and Al–Mg–Si–Fe systems is carried out to understand the role of alloying on the formation of different primary Fe-rich intermetallic compounds. The results showed that the Fe-rich intermetallic phases precipitate in two solidification stages in the high pressure die casting process: one is in the shot sleeve and the other is in the die cavity, resulting in the different morphologies and sizes. In the Al–Mg–Si–Mn alloys, the Fe-rich intermetallic phase formed in the shot sleeve exhibited coarse compact morphology and those formed in the die cavity were fine compact particles. Although with different morphologies, the compact intermetallics were identified as the same α-AlFeMnSi phase with typical composition of Al24(Fe,Mn)6Si2. With increased Fe content, β-AlFe was found in the microstructure with a long needle-shaped morphology, which was identified as Al13(Fe,Mn)4Si0.25. In the Al–Mg–Si alloy, the identified Fe-rich intermetallics included the compact α-AlFeSi phase with typical composition of Al8Fe2Si and the needle-shaped β-AlFe phase with typical composition of Al13Fe4. Generally, the existence of iron in the alloy slightly increases the yield strength, but significantly reduces the elongation. The ultimate tensile strength maintains at similar levels when Fe contents is less than 0.5 wt%, but decreases significantly with the further increased Fe concentration in the alloys. CALPHAD modelling shows that the addition of Mn enlarges the Fe tolerance for the formation of α-AlFeMnSi intermetallics and suppresses the formation of β-AlFe phase in the Al–Mg–Si alloys, and thus improves their mechanical properties.EPSRC and JL

    Anomalous robustness of the 5/2 fractional quantum Hall state near a sharp phase boundary

    Full text link
    We report magneto-transport measurements in wide GaAs quantum wells with tunable density to probe the stability of the fractional quantum Hall effect at filling factor ν=\nu = 5/2 in the vicinity of the crossing between Landau levels (LLs) belonging to the different (symmetric and antisymmetric) electric subbands. When the Fermi energy (EFE_F) lies in the excited-state LL of the symmetric subband, the 5/2 quantum Hall state is surprisingly stable and gets even stronger near this crossing, and then suddenly disappears and turns into a metallic state once EFE_F moves to the ground-state LL of the antisymmetric subband. The sharpness of this disappearance suggests a first-order transition

    Determinant representations of scalar products for the open XXZ chain with non-diagonal boundary terms

    Full text link
    With the help of the F-basis provided by the Drinfeld twist or factorizing F-matrix for the open XXZ spin chain with non-diagonal boundary terms, we obtain the determinant representations of the scalar products of Bethe states of the model.Comment: Latex file, 28 pages, based on the talk given by W. -L. Yang at Statphys 24, Cairns, Australia, 19-23 July, 201

    The two-dimensional hydrogen atom revisited

    Get PDF
    The bound state energy eigenvalues for the two-dimensional Kepler problem are found to be degenerate. This "accidental" degeneracy is due to the existence of a two-dimensional analogue of the quantum-mechanical Runge-Lenz vector. Reformulating the problem in momentum space leads to an integral form of the Schroedinger equation. This equation is solved by projecting the two-dimensional momentum space onto the surface of a three-dimensional sphere. The eigenfunctions are then expanded in terms of spherical harmonics, and this leads to an integral relation in terms of special functions which has not previously been tabulated. The dynamical symmetry of the problem is also considered, and it is shown that the two components of the Runge-Lenz vector in real space correspond to the generators of infinitesimal rotations about the respective coordinate axes in momentum space.Comment: 10 pages, no figures, RevTex
    corecore