164,425 research outputs found
Thermal rectifier from deformed carbon nanohorns
We study thermal rectification in single-walled carbon nanohorns (SWNHs) by
using non-equilibrium molecular dynamics (MD) method. It is found that the
horns with the bigger top angles show larger asymmetric heat transport due to
the larger structural gradient distribution. This kind of gradient behavior can
be further adjusted by applying external strain on the SWNHs. After being
carefully elongated along the axial direction, the thermal rectification in the
elongated SWNHs can become more obvious than that in undeformed ones. The
maximum rectification efficiency of SWNHs is much bigger than that of carbon
nanotube intramolecular junctions.Comment: 3 figure
Effect of iron on the microstructure and mechanical property of Al-Mg-Si-Mn and Al-Mg-Si diecast alloys
This article is made available through the Brunel Open Access Publishing Fund. Copyright @ 2012 Elsevier B.V.This article has been made available through the Brunel Open Access Publishing Fund.Al–Mg–Si based alloys can provide super ductility to satisfy the demands of thin wall castings in the application of automotive structure. In this work, the effect of iron on the microstructure and mechanical properties of the Al–Mg–Si diecast alloys with different Mn concentrations is investigated. The CALPHAD (acronym of Calculation of Phase Diagrams) modelling with the thermodynamic properties of the multi-component Al–Mg–Si–Mn–Fe and Al–Mg–Si–Fe systems is carried out to understand the role of alloying on the formation of different primary Fe-rich intermetallic compounds. The results showed that the Fe-rich intermetallic phases precipitate in two solidification stages in the high pressure die casting process: one is in the shot sleeve and the other is in the die cavity, resulting in the different morphologies and sizes. In the Al–Mg–Si–Mn alloys, the Fe-rich intermetallic phase formed in the shot sleeve exhibited coarse compact morphology and those formed in the die cavity were fine compact particles. Although with different morphologies, the compact intermetallics were identified as the same α-AlFeMnSi phase with typical composition of Al24(Fe,Mn)6Si2. With increased Fe content, β-AlFe was found in the microstructure with a long needle-shaped morphology, which was identified as Al13(Fe,Mn)4Si0.25. In the Al–Mg–Si alloy, the identified Fe-rich intermetallics included the compact α-AlFeSi phase with typical composition of Al8Fe2Si and the needle-shaped β-AlFe phase with typical composition of Al13Fe4. Generally, the existence of iron in the alloy slightly increases the yield strength, but significantly reduces the elongation. The ultimate tensile strength maintains at similar levels when Fe contents is less than 0.5 wt%, but decreases significantly with the further increased Fe concentration in the alloys. CALPHAD modelling shows that the addition of Mn enlarges the Fe tolerance for the formation of α-AlFeMnSi intermetallics and suppresses the formation of β-AlFe phase in the Al–Mg–Si alloys, and thus improves their mechanical properties.EPSRC and JL
Anomalous robustness of the 5/2 fractional quantum Hall state near a sharp phase boundary
We report magneto-transport measurements in wide GaAs quantum wells with
tunable density to probe the stability of the fractional quantum Hall effect at
filling factor 5/2 in the vicinity of the crossing between Landau
levels (LLs) belonging to the different (symmetric and antisymmetric) electric
subbands. When the Fermi energy () lies in the excited-state LL of the
symmetric subband, the 5/2 quantum Hall state is surprisingly stable and gets
even stronger near this crossing, and then suddenly disappears and turns into a
metallic state once moves to the ground-state LL of the antisymmetric
subband. The sharpness of this disappearance suggests a first-order transition
Impaired phloem loading in zmsweet13a,b,c sucrose transporter triple knock-out mutants in Zea mays
Determinant representations of scalar products for the open XXZ chain with non-diagonal boundary terms
With the help of the F-basis provided by the Drinfeld twist or factorizing
F-matrix for the open XXZ spin chain with non-diagonal boundary terms, we
obtain the determinant representations of the scalar products of Bethe states
of the model.Comment: Latex file, 28 pages, based on the talk given by W. -L. Yang at
Statphys 24, Cairns, Australia, 19-23 July, 201
The two-dimensional hydrogen atom revisited
The bound state energy eigenvalues for the two-dimensional Kepler problem are
found to be degenerate. This "accidental" degeneracy is due to the existence of
a two-dimensional analogue of the quantum-mechanical Runge-Lenz vector.
Reformulating the problem in momentum space leads to an integral form of the
Schroedinger equation. This equation is solved by projecting the
two-dimensional momentum space onto the surface of a three-dimensional sphere.
The eigenfunctions are then expanded in terms of spherical harmonics, and this
leads to an integral relation in terms of special functions which has not
previously been tabulated. The dynamical symmetry of the problem is also
considered, and it is shown that the two components of the Runge-Lenz vector in
real space correspond to the generators of infinitesimal rotations about the
respective coordinate axes in momentum space.Comment: 10 pages, no figures, RevTex
- …
