40,628 research outputs found
Thermal acoustic oscillations, volume 2
A number of thermal acoustic oscillation phenomena and their effects on cryogenic systems were studied. The conditions which cause or suppress oscillations, the frequency, amplitude and intensity of oscillations when they exist, and the heat loss they induce are discussed. Methods of numerical analysis utilizing the digital computer were developed for use in cryogenic systems design. In addition, an experimental verification program was conducted to study oscillation wave characteristics and boiloff rate. The data were then reduced and compared with the analytical predictions
Predicting rare events in chemical reactions: application to skin cell proliferation
In a well-stirred system undergoing chemical reactions, fluctuations in the
reaction propensities are approximately captured by the corresponding chemical
Langevin equation. Within this context, we discuss in this work how the Kramers
escape theory can be used to predict rare events in chemical reactions. As an
example, we apply our approach to a recently proposed model on cell
proliferation with relevance to skin cancer [P.B. Warren, Phys. Rev. E {\bf
80}, 030903 (2009)]. In particular, we provide an analytical explanation for
the form of the exponential exponent observed in the onset rate of uncontrolled
cell proliferation.Comment: New materials and references added. To appear in Physical Review
Semantic reclassification of the UMLS concepts
Summary: Accurate semantic classification is valuable for text mining and knowledge-based tasks that perform inference based on semantic classes. To benefit applications using the semantic classification of the Unified Medical Language System (UMLS) concepts, we automatically reclassified the concepts based on their lexical and contextual features. The new classification is useful for auditing the original UMLS semantic classification and for building biomedical text mining applications
Timing Features of the Accretion--driven Millisecond X-Ray Pulsar XTE J1807--294 in 2003 March Outburst
In order to probe the activity of the inner disk flow and its effect on the
neutron star surface emissions, we carried out the timing analysis of the Rossi
X-Ray Timing Explorer (RXTE) observations of the millisecond X-ray pulsar XTE
J1807--294, focusing on its correlated behaviors in X-ray intensities, hardness
ratios, pulse profiles and power density spectra. The source was observed to
have a serial of broad "puny" flares on a timescale of hours to days on the top
of a decaying outburst in March 2003. In the flares, the spectra are softened
and the pulse profiles become more sinusoidal. The frequency of kilohertz
quasi-periodic oscillation (kHz QPO) is found to be positively related to the
X-ray count rate in the flares. These features observed in the flares could be
due to the accreting flow inhomogeneities. It is noticed that the fractional
pulse amplitude increases with the flare intensities in a range of , comparable to those observed in the thermonuclear bursts of the
millisecond X-ray pulsar XTE J1814--338, whereas it remains at about 6.5% in
the normal state. Such a significant variation of the pulse profile in the
"puny" flares may reflect the changes of physical parameters in the inner disk
accretion region. Furthermore, we noticed an overall positive correlation
between the kHz QPO frequency and the fractional pulse amplitude, which could
be the first evidence representing that the neutron-star surface emission
properties are very sensitive to the disk flow inhomogeneities. This effect
should be cautiously considered in the burst oscillation studies.Comment: Accepted by ApJ, 23 pages, 7 figures, 3 table
Terahertz metamaterials on free-standing highly-flexible polyimide substrates
We have fabricated resonant terahertz metamaterials on free standing
polyimide substrates. The low-loss polyimide substrates can be as thin as 5.5
micron yielding robust large-area metamaterials which are easily wrapped into
cylinders with a radius of a few millimeters. Our results provide a path
forward for creating multi-layer non-planar metamaterials at terahertz
frequencies.Comment: 4 pages, higher resolution figures available upon reques
Approximate Minimum Diameter
We study the minimum diameter problem for a set of inexact points. By
inexact, we mean that the precise location of the points is not known. Instead,
the location of each point is restricted to a contineus region (\impre model)
or a finite set of points (\indec model). Given a set of inexact points in
one of \impre or \indec models, we wish to provide a lower-bound on the
diameter of the real points.
In the first part of the paper, we focus on \indec model. We present an
time
approximation algorithm of factor for finding minimum diameter
of a set of points in dimensions. This improves the previously proposed
algorithms for this problem substantially.
Next, we consider the problem in \impre model. In -dimensional space, we
propose a polynomial time -approximation algorithm. In addition, for
, we define the notion of -separability and use our algorithm for
\indec model to obtain -approximation algorithm for a set of
-separable regions in time
- …