40,628 research outputs found

    Thermal acoustic oscillations, volume 2

    Get PDF
    A number of thermal acoustic oscillation phenomena and their effects on cryogenic systems were studied. The conditions which cause or suppress oscillations, the frequency, amplitude and intensity of oscillations when they exist, and the heat loss they induce are discussed. Methods of numerical analysis utilizing the digital computer were developed for use in cryogenic systems design. In addition, an experimental verification program was conducted to study oscillation wave characteristics and boiloff rate. The data were then reduced and compared with the analytical predictions

    Predicting rare events in chemical reactions: application to skin cell proliferation

    Full text link
    In a well-stirred system undergoing chemical reactions, fluctuations in the reaction propensities are approximately captured by the corresponding chemical Langevin equation. Within this context, we discuss in this work how the Kramers escape theory can be used to predict rare events in chemical reactions. As an example, we apply our approach to a recently proposed model on cell proliferation with relevance to skin cancer [P.B. Warren, Phys. Rev. E {\bf 80}, 030903 (2009)]. In particular, we provide an analytical explanation for the form of the exponential exponent observed in the onset rate of uncontrolled cell proliferation.Comment: New materials and references added. To appear in Physical Review

    Semantic reclassification of the UMLS concepts

    Get PDF
    Summary: Accurate semantic classification is valuable for text mining and knowledge-based tasks that perform inference based on semantic classes. To benefit applications using the semantic classification of the Unified Medical Language System (UMLS) concepts, we automatically reclassified the concepts based on their lexical and contextual features. The new classification is useful for auditing the original UMLS semantic classification and for building biomedical text mining applications

    Timing Features of the Accretion--driven Millisecond X-Ray Pulsar XTE J1807--294 in 2003 March Outburst

    Full text link
    In order to probe the activity of the inner disk flow and its effect on the neutron star surface emissions, we carried out the timing analysis of the Rossi X-Ray Timing Explorer (RXTE) observations of the millisecond X-ray pulsar XTE J1807--294, focusing on its correlated behaviors in X-ray intensities, hardness ratios, pulse profiles and power density spectra. The source was observed to have a serial of broad "puny" flares on a timescale of hours to days on the top of a decaying outburst in March 2003. In the flares, the spectra are softened and the pulse profiles become more sinusoidal. The frequency of kilohertz quasi-periodic oscillation (kHz QPO) is found to be positively related to the X-ray count rate in the flares. These features observed in the flares could be due to the accreting flow inhomogeneities. It is noticed that the fractional pulse amplitude increases with the flare intensities in a range of 2\sim 2%-14%, comparable to those observed in the thermonuclear bursts of the millisecond X-ray pulsar XTE J1814--338, whereas it remains at about 6.5% in the normal state. Such a significant variation of the pulse profile in the "puny" flares may reflect the changes of physical parameters in the inner disk accretion region. Furthermore, we noticed an overall positive correlation between the kHz QPO frequency and the fractional pulse amplitude, which could be the first evidence representing that the neutron-star surface emission properties are very sensitive to the disk flow inhomogeneities. This effect should be cautiously considered in the burst oscillation studies.Comment: Accepted by ApJ, 23 pages, 7 figures, 3 table

    Terahertz metamaterials on free-standing highly-flexible polyimide substrates

    Full text link
    We have fabricated resonant terahertz metamaterials on free standing polyimide substrates. The low-loss polyimide substrates can be as thin as 5.5 micron yielding robust large-area metamaterials which are easily wrapped into cylinders with a radius of a few millimeters. Our results provide a path forward for creating multi-layer non-planar metamaterials at terahertz frequencies.Comment: 4 pages, higher resolution figures available upon reques

    Approximate Minimum Diameter

    Full text link
    We study the minimum diameter problem for a set of inexact points. By inexact, we mean that the precise location of the points is not known. Instead, the location of each point is restricted to a contineus region (\impre model) or a finite set of points (\indec model). Given a set of inexact points in one of \impre or \indec models, we wish to provide a lower-bound on the diameter of the real points. In the first part of the paper, we focus on \indec model. We present an O(21ϵdϵ2dn3)O(2^{\frac{1}{\epsilon^d}} \cdot \epsilon^{-2d} \cdot n^3 ) time approximation algorithm of factor (1+ϵ)(1+\epsilon) for finding minimum diameter of a set of points in dd dimensions. This improves the previously proposed algorithms for this problem substantially. Next, we consider the problem in \impre model. In dd-dimensional space, we propose a polynomial time d\sqrt{d}-approximation algorithm. In addition, for d=2d=2, we define the notion of α\alpha-separability and use our algorithm for \indec model to obtain (1+ϵ)(1+\epsilon)-approximation algorithm for a set of α\alpha-separable regions in time O(21ϵ2.n3ϵ10.sin(α/2)3)O(2^{\frac{1}{\epsilon^2}}\allowbreak . \frac{n^3}{\epsilon^{10} .\sin(\alpha/2)^3} )
    corecore