11,983 research outputs found

    Robustness of Majorana Fermion induced Fractional Josephson Effect

    Full text link
    It is shown in previous works that the coupling between two Majorana end states in superconducting quantum wires leads to fractional Josephson effect. However, in realistic experimental conditions, multiple bands of the wires are occupied and the Majorana end states are accompanied by other fermionic end states. This raises the question concerning the robustness of fractional Josephson effect in these situations. In this work, we show that the absence of the avoided energy crossing which gives rise to the fractional Josephson effect is robust, even when the Majorana fermions are coupled with arbitrary strengths to other fermions. Moreover, we calculate the temperature dependence of the fractional Josephson current and show that it is suppressed by thermal excitations to the other fermion bound states.Comment: 4+ pages, 3 figure

    Non-Markovian master equation for a damped oscillator with time-varying parameters

    Full text link
    We derive an exact non-Markovian master equation that generalizes the previous work [Hu, Paz and Zhang, Phys. Rev. D {\bf 45}, 2843 (1992)] to damped harmonic oscillators with time-varying parameters. This is achieved by exploiting the linearity of the system and operator solution in Heisenberg picture. Our equation governs the non-Markovian quantum dynamics when the system is modulated by external devices. As an application, we apply our equation to parity kick decoupling problems. The time-dependent dissipative coefficients in the master equation are shown to be modified drastically when the system is driven by π\pi pulses. For coherence protection to be effective, our numerical results indicate that kicking period should be shorter than memory time of the bath. The effects of using soft pulses in an ohmic bath are also discussed

    Polarization and frequency disentanglement of photons via stochastic polarization mode dispersion

    Full text link
    We investigate the quantum decoherence of frequency and polarization variables of photons via polarization mode dispersion in optical fibers. By observing the analogy between the propagation equation of the field and the Schr\"odinger equation, we develop a master equation under Markovian approximation and analytically solve for the field density matrix. We identify distinct decay behaviors for the polarization and frequency variables for single-photon and two-photon states. For the single photon case, purity functions indicate that complete decoherence for each variable is possible only for infinite fiber length. For entangled two-photon states passing through separate fibers, entanglement associated with each variable can be completely destroyed after characteristic finite propagation distances. In particular, we show that frequency disentanglement is independent of the initial polarization status. For propagation of two photons in a common fiber, the evolution of a polarization singlet state is addressed. We show that while complete polarization disentanglement occurs at a finite propagation distance, frequency entanglement could survive at any finite distance for gaussian states.Comment: 2 figure

    The LuckyCam Survey for Very Low Mass Binaries II: 13 new M4.5-M6.0 Binaries

    Get PDF
    We present results from a high-angular-resolution survey of 78 very low mass (VLM) binary systems with 6.0 = 0.15 arcsec/yr. 21 VLM binaries were detected, 13 of them new discoveries. The new binary systems range in separation between 0.18 arcsec and 1.3 arcsec. The distance-corrected binary fraction is 13.5% (+6.5%/-4%), in agreement with previous results. 9 of the new binary systems have orbital radii > 10 AU, including a new wide VLM binary with 27 AU projected orbital separation. One of the new systems forms two components of a 2300 AU separation triple system. We find that the orbital radius distribution of the binaries with V-K < 6.5 in this survey appears to be different from that of redder (lower-mass) objects, suggesting a possible rapid change in the orbital radius distribution at around the M5 spectral type. The target sample was also selected to investigate X-ray activity among VLM binaries. There is no detectable correlation between excess X-Ray emission and the frequency and binary properties of the VLM systems.Comment: 11 pages, 8 figures. Submitted to MNRA

    Biochemical characterization of the retinoid isomerase system of the eye

    Get PDF
    Journal ArticleWe have previously shown that membranes from the retinal pigment epithelium can transform added all-trans-retinol into a mixture of 11-cis-retinoids, demonstrating the "missing reaction" in the visual cycle for the first time (Bernstein, P. S., Law, W. C., and Rando, R. R. (1987) Proc. Natl. Acad. Sci. U.S.A. 84, 1849-1853). In this article, this isomerase activity is further characterized. Double-label experiments with [15-3H]- and [15-14C]all-trans-retinol as the substrate show that the tritium label is retained in the 11-cis-retinol and 11-cis-retinyl palmitate products. This requires that isomerization occur at the alcohol level of oxidation. All-trans-retinyl esters, such as the palmitate, acetate, butyrate, and hexanoate esters, are not directly transformed into their 11-cis counterparts by the membranes. The data are consistent with the presence of an all-trans-retinol isomerase enzyme system or enzyme complex, which produces 11-cis-retinol. Other isomeric retinols were tested for substrate activity. Neither 9-cis-retinol(al) nor 13-cis-retinol were processed by the isomerase. Since the membranes containing the isomerase possess other retinol metabolizing activities, such as retinyl ester synthetase and dehydrogenase activities, further purification was attempted. Appreciable quantities of all detergents tested led to the disappearance of isomerase activity, and high salt or EDTA did not dissociate isomerase activity from the membranes. However, extensive sonication of the membranes did produce a 100,000 x g supernatant fraction of light membranes depleted of other all-trans-retinol processing activities. The isomerase activity in these membranes was saturable with all-trans-retinol, as required for a biologically significant process, and showed a Vmax of 5 pmol/h/mg of protein, a KM of 0.8 microM, and a pH optimum of 8. The isomerase was destroyed by proteinase K, by phospholipase C, by heating, or by ethanol at concentrations greater than 1%. The addition of high energy compounds, such as MgATP, MgGTP, or palmitoyl-CoA, did not appear to stimulate isomerase activity in the 100,000 x g supernatant

    Nitrous oxide emissions from the Arabian Sea: A synthesis

    Get PDF
    We computed high-resolution (1º latitude x 1º longitude) seasonal and annual nitrous oxide (N2O) concentration fields for the Arabian Sea surface layer using a database containing more than 2400 values measured between December 1977 and July 1997. N2O concentrations are highest during the southwest (SW) monsoon along the southern Indian continental shelf. Annual emissions range from 0.33 to 0.70 Tg N2O and are dominated by fluxes from coastal regions during the SW and northeast monsoons. Our revised estimate for the annual N2O flux from the Arabian Sea is much more tightly constrained than the previous consensus derived using averaged in-situ data from a smaller number of studies. However, the tendency to focus on measurements in locally restricted features in combination with insufficient seasonal data coverage leads to considerable uncertainties of the concentration fields and thus in the flux estimates, especially in the coastal zones of the northern and eastern Arabian Sea. The overall mean relative error of the annual N2O emissions from the Arabian Sea was estimated to be at least 65%

    Quantum fluctuations in coupled dark solitons in trapped Bose-Einstein condensates

    Full text link
    We show that the quantum fluctuations associated with the Bogoliubov quasiparticle vacuum can be strongly concentrated inside dark solitons in a trapped Bose Einstein condensate. We identify a finite number of anomalous modes that are responsible for such quantum phenomena. The fluctuations in these anomalous modes correspond to the `zero-point' oscillations in coupled dark solitons.Comment: 4 pages, 3 figure

    High speed quantum gates with cavity quantum electrodynamics

    Get PDF
    Cavity quantum electrodynamic schemes for quantum gates are amongst the earliest quantum computing proposals. Despite continued progress, and the dramatic recent demonstration of photon blockade, there are still issues with optimal coupling and gate operation involving high-quality cavities. Here we show dynamic control techniques that allow scalable cavity-QED based quantum gates, that use the full bandwidth of the cavities. When applied to quantum gates, these techniques allow an order of magnitude increase in operating speed, and two orders of magnitude reduction in cavity Q, over passive cavity-QED architectures. Our methods exploit Stark shift based Q-switching, and are ideally suited to solid-state integrated optical approaches to quantum computing.Comment: 4 pages, 3 figures, minor revision
    • …
    corecore