We investigate the quantum decoherence of frequency and polarization
variables of photons via polarization mode dispersion in optical fibers. By
observing the analogy between the propagation equation of the field and the
Schr\"odinger equation, we develop a master equation under Markovian
approximation and analytically solve for the field density matrix. We identify
distinct decay behaviors for the polarization and frequency variables for
single-photon and two-photon states. For the single photon case, purity
functions indicate that complete decoherence for each variable is possible only
for infinite fiber length. For entangled two-photon states passing through
separate fibers, entanglement associated with each variable can be completely
destroyed after characteristic finite propagation distances. In particular, we
show that frequency disentanglement is independent of the initial polarization
status. For propagation of two photons in a common fiber, the evolution of a
polarization singlet state is addressed. We show that while complete
polarization disentanglement occurs at a finite propagation distance, frequency
entanglement could survive at any finite distance for gaussian states.Comment: 2 figure