44 research outputs found

    Explicit Logic Circuits Discriminate Neural States

    Get PDF
    The magnitude and apparent complexity of the brain's connectivity have left explicit networks largely unexplored. As a result, the relationship between the organization of synaptic connections and how the brain processes information is poorly understood. A recently proposed retinal network that produces neural correlates of color vision is refined and extended here to a family of general logic circuits. For any combination of high and low activity in any set of neurons, one of the logic circuits can receive input from the neurons and activate a single output neuron whenever the input neurons have the given activity state. The strength of the output neuron's response is a measure of the difference between the smallest of the high inputs and the largest of the low inputs. The networks generate correlates of known psychophysical phenomena. These results follow directly from the most cost-effective architectures for specific logic circuits and the minimal cellular capabilities of excitation and inhibition. The networks function dynamically, making their operation consistent with the speed of most brain functions. The networks show that well-known psychophysical phenomena do not require extraordinarily complex brain structures, and that a single network architecture can produce apparently disparate phenomena in different sensory systems

    Sulla legge di formazione delle figure di lichtenberg

    No full text

    At first glance, transparency enhances assimilation

    Get PDF
    Contains fulltext : 73508.pdf (publisher's version ) (Open Access)We investigated the role of transparency, perceptual grouping, and presentation time on perceived lightness. Both transparency and perceptual grouping have been found to result in assimilation effects, but only for ambiguous stimulus displays and with specific attentional instructions. By varying the presentation times of displays with two partly overlapping transparent E-shaped objects, we measured assimilation in unambiguous stimulus displays and without specific attentional instructions. The task was to judge which of two simultaneously presented E-shaped objects was darker. With unrestrained presentation times, if a transparency interpretation was possible, assimilation was not found. Inhibiting a transparency interpretation by occluding the local junctions between the two E-shaped objects, did lead to assimilation. With short presentation times, if a transparency interpretation was possible, assimilation was now also found. Thus, we conclude that, although transparency appears to enhance assimilation, with unambiguous stimulus displays and without specific attentional instructions, perceptual grouping is more important for assimilation to occur.9 p
    corecore