522 research outputs found

    BIOMECHANICAL STUDY ON CADAVER KNEE FOR THE EVALUATION OF CRUCIATE KNEE LIGAMENT RECONSTRUCTIONS

    Get PDF
    INTRODUCTION: Ruptures of the anterior and posterior cruciate knee ligament (ACL and PCL), alone or combined, are some of the most frequent joint injuries, especially in sports. The long-term unsatisfactory results and lack of systematic evaluation of surgical reconstructions have led us to undergo an evaluation on cadaver knees. MATERIAL AND METHOD: A preliminary study was performed on one cadaver knee. The femur was fixed on a holder and magnetic sensors “BirdsTM” were attached to the tibia and the femur, which tracked the knee’s movement. A threedimensional knee analyzer GENI(1) was used to calculate kinematic parameters (tibial internal and external rotation and ab/adduction), as well as ligament combined deformation (elongation / bending / torsion) during knee flexion. This experiment was performed on an intact knee and a knee where the PCL has been cut and reconstructed using a synthetic Trevia ligament. Finally the knee was dissected to produce a combined postero-lateral instability and reconstructed with and without postero-lateral corner reconstruction. The effect of different reconstruction methods on kinematics and ligament deformation were compared. RESULTS AND DISCUSSION: Kinematic parameters changed significantly when PCl and postero-lateral corner were dissected. The reconstruction of the PCL alone, using an “Over-the-Bottom” method described by Krudwig(2), shifted the curves back to the initial situation and decreased the variability of the movement. Ligament deformation was 3 mm elongation, 50o femoral flexion and 90o torsion. These values are in accordance with material properties and should lead to good long-term biofunctionnality. CONCLUSION: This study proposes an in vitro protocol for a better understanding of the clinical success or failure of different procedures. Preliminary results showed that the system and the protocol setup are sensitive to changes in kinematics following posterior cruciate ligament dissection and reconstruction. Experiments are performed at this time on several cadaver knees, in order to compare different reconstruction methods. REFERENCES: Sati, M. et al. (1997). Computer Assisted Knee Surgery: Diagnostics and Planning of Knee Surgery. Computer Aided Surgery 2, 108-123. Krudwig, W. (1997). In L'H. Yahia (Ed.), Ligaments and Ligamentoplasties. Heidelberg: Springer Verlag

    Second T = 3/2 state in 9^9B and the isobaric multiplet mass equation

    Get PDF
    Recent high-precision mass measurements and shell model calculations~[Phys. Rev. Lett. {\bf 108}, 212501 (2012)] have challenged a longstanding explanation for the requirement of a cubic isobaric multiplet mass equation for the lowest A=9A = 9 isospin quartet. The conclusions relied upon the choice of the excitation energy for the second T=3/2T = 3/2 state in 9^9B, which had two conflicting measurements prior to this work. We remeasured the energy of the state using the 9Be(3He,t)^9{\rm Be}(^3{\rm He},t) reaction and significantly disagree with the most recent measurement. Our result supports the contention that continuum coupling in the most proton-rich member of the quartet is not the predominant reason for the large cubic term required for A=9A = 9 nuclei

    Hydrothermal Preparation of Gd+3 -Doped Titanate Nanotubes: Magnetic Properties and Photovoltaic Performance

    Get PDF
    Pure and Gd+3 -doped titanate nanotubes (TNTs) materials were synthesized by a hydrothermal method. Their morphology, optical properties, thermal stability, and magnetic properties were characterized by X-ray diffraction (XRD), transmission electron microscope (TEM), UV-Vis spectroscopy, thermal analysis, and magnetic measurements. It was found that doping renders Gd+3-TNT visible light active and results in smaller crystallite size and larger surface area as well as higher thermal stability compared to pure titanate nanotubes. The estimated magnetic moments point to presence of weak antiferromagnetic interaction. Application of the prepared Gd+3-TNT for modifying conventional photoanodes in polymer solar cells was attempted. Preliminary results show slightly improved photovoltaic energy conversion efficiency in the devices containing the newly designed Gd+3 -doped nanotubes

    Gamma ray production cross sections in proton induced reactions on natural Mg, Si and Fe targets over the proton energy range 30 up to 66 MeV

    Full text link
    Gamma-ray excitation functions have been measured for 30, 42, 54 and 66 MeV proton beams accelerated onto C + O (Mylar), Mg, Si, and Fe targets of astrophysical interest at the separate-sector cyclotron of iThemba LABS in Somerset West (Cape Town, South Africa). A large solid angle, high energy resolution detection system of the Eurogam type was used to record Gamma-ray energy spectra. Derived preliminary results of Gamma-ray line production cross sections for the Mg, Si and Fe target nuclei are reported and discussed. The current cross section data for known, intense Gamma-ray lines from these nuclei consistently extend to higher proton energies previous experimental data measured up to Ep ~ 25 MeV at the Orsay and Washington tandem accelerators. Data for new Gamma-ray lines observed for the first time in this work are also reported.Comment: 11 pages, 6 figures. IOP Institute of Physics Conference Nuclear Physics in Astrophysics VII, 28th EPF Nuclear Physics Divisional Conference, May 18-22 2015, York, U

    Analysis of the mechanical performance of the 4.2 m long MQXFA magnets for the Hi-Lumi LHC Upgrade

    Full text link
    Under the U.S. High Luminosity LHC Accelerator Upgrade Project (HL-LHC AUP), the 150 mm bore, high-field Nb3Sn low-\b{eta} MQXFA quadrupole magnets are being fabricated, assembled and tested, in the context of the CERN Hi-Luminosity LHC (HL-LHC) upgrade. These magnets have 4.2 m magnetic length and 4.56 m long iron yoke. To date, eight MQXFA magnets have been tested. One of the magnets additionally underwent a successful endurance test with 40 triggered quenches, and two magnets did not perform as expected. This work summarizes for the first time the available strain gauge data from eight identical Nb3Sn MQXFA tested magnets, focusing on the endurance test, and on a possible cause of underperformance of the two magnets that did not pass the vertical test. We applied methods to prevent this from happening in future MQXFA magnets, which shown to be effective for last two tested magnets

    On the Complexity of Query Result Diversification

    Get PDF
    Query result diversification is a bi-criteria optimization problem for ranking query results. Given a database D, a query Q and a positive integer k, it is to find a set of k tuples from Q(D) such that the tuples are as relevant as possible to the query, and at the same time, as diverse as possible to each other. Subsets of Q(D) are ranked by an objective function defined in terms of relevance and diversity. Query result diversification has found a variety of applications in databases, information retrieval and operations research. This paper studies the complexity of result diversification for relational queries. We identify three problems in connection with query result diversification, to determine whether there exists a set of k tuples that is ranked above a bound with respect to relevance and diversity, to assess the rank of a given k-element set, and to count how many k-element sets are ranked above a given bound. We study these problems for a variety of query languages and for three objective functions. We establish the upper and lower bounds of these problems, all matching, for both combined complexity and data complexity. We also investigate several special settings of these problems, identifying tractable cases. 1

    Cytokine Profiles in Toxoplasmic and Viral Uveitis

    Get PDF
    BackgroundUveitis is a major cause of visual impairment throughout the world. Analysis of cytokine profiles in aqueous humor specimens may provide insight into the physiopathological processes that underly retinal damage in this context MethodsUsing a multiplex assay, we determined the concentrations of 17 cytokines and chemokines in aqueous humor specimens obtained from patients with ocular toxoplasmosis or viral uveitis and compared these concentrations with those in specimens obtained from patients with noninfectious intermediate uveitis or cataract ResultsFive mediators (interleukin [IL]-8, monocyte chemoattractant protein-1, tumor necrosis factor-α, IL-4, and IL-10) were detected in >50% of patients in all groups. In contrast, IL-5 and IL-12 were specific for ocular toxoplasmosis, and granulocyte monocyte colony-stimulating factor and IL-1 were specific for viral uveitis; these mediators could present specific markers for diagnostic purposes. Interferon-γ, IL-6, and macrophage inflammatory protein-1β were common markers of ocular toxoplasmosis and viral uveitis. IL-17 was a common marker of ocular toxoplasmosis and intermediate uveitis ConclusionsWe found specific cytokine profiles for each type of uveitis, with large interindividual variations and no etiological or clinical correlations. Ocular cytokine mapping contributes to a better understanding of the physiopathology of specific forms of uveitis and provides guidance for new targeted treatmen

    Schemas for Unordered XML on a DIME

    Get PDF
    We investigate schema languages for unordered XML having no relative order among siblings. First, we propose unordered regular expressions (UREs), essentially regular expressions with unordered concatenation instead of standard concatenation, that define languages of unordered words to model the allowed content of a node (i.e., collections of the labels of children). However, unrestricted UREs are computationally too expensive as we show the intractability of two fundamental decision problems for UREs: membership of an unordered word to the language of a URE and containment of two UREs. Consequently, we propose a practical and tractable restriction of UREs, disjunctive interval multiplicity expressions (DIMEs). Next, we employ DIMEs to define languages of unordered trees and propose two schema languages: disjunctive interval multiplicity schema (DIMS), and its restriction, disjunction-free interval multiplicity schema (IMS). We study the complexity of the following static analysis problems: schema satisfiability, membership of a tree to the language of a schema, schema containment, as well as twig query satisfiability, implication, and containment in the presence of schema. Finally, we study the expressive power of the proposed schema languages and compare them with yardstick languages of unordered trees (FO, MSO, and Presburger constraints) and DTDs under commutative closure. Our results show that the proposed schema languages are capable of expressing many practical languages of unordered trees and enjoy desirable computational properties.Comment: Theory of Computing System
    corecore