1,654 research outputs found

    Atmospheric mercury inputs in montane soils increase with elevation: evidence from mercury isotope signatures

    Get PDF
    The influence of topography on the biogeochemical cycle of mercury (Hg) has received relatively little attention. Here, we report the measurement of Hg species and their corresponding isotope composition in soil sampled along an elevational gradient transect on Mt. Leigong in subtropical southwestern China. The data are used to explain orography-related effects on the fate and behaviour of Hg species in montane environments. The total- and methyl-Hg concentrations in topsoil samples show a positive correlation with elevation. However, a negative elevation dependence was observed in the mass- ependent fractionation (MDF) and mass-independent fractionation (MIF) signatures of Hg isotopes. Both a MIF (D199Hg) binary mixing approach and the traditional inert element method indicate that the content of Hg derived from the atmosphere distinctly increases with altitude.publishedVersio

    Cost-effective fabrication of bio-inspired nacre-like composite materials with high strength and toughness

    Get PDF
    A cost-effective one-step densification process based on bi-directional freeze casting was investigated to produce nacre-like alumina/poly (methyl methacrylate) (PMMA) composites with a unique micro-layered (μL) architecture. This method has the advantage of shorter processing time, as it requires only sintering once instead of twice as in the fabrication of conventional brick-and-mortar (BM) composites via freeze casting. By tuning the processing parameters, composites with different ceramic content and layer thickness were obtained. The resultant mechanical properties of μL composites showed that ceramic content and wall thickness affected mechanical properties significantly. The μL composite with fine ceramic walls (8 μm) and relatively high ceramic fraction (72 vol%) exhibited an exceptional combination of high flexural strength (178 MPa) and fracture toughness (12.5 MPa m1/2). The μL composites were also compared with the conventional BM composites. Although the fracture behaviour of both composites exhibited similar extrinsic toughening mechanisms, the μL composites with longer ceramic walls displayed superior mechanical properties in terms of strength and fracture toughness in comparison with the BM composites comprising short ceramic walls (i.e. bricks), due to the effectiveness of stress transfer of load-bearing ceramic phase within the composites

    Mitochondrial matR sequences help to resolve deep phylogenetic relationships in rosids

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Rosids are a major clade in the angiosperms containing 13 orders and about one-third of angiosperm species. Recent molecular analyses recognized two major groups (i.e., fabids with seven orders and malvids with three orders). However, phylogenetic relationships within the two groups and among fabids, malvids, and potentially basal rosids including Geraniales, Myrtales, and Crossosomatales remain to be resolved with more data and a broader taxon sampling. In this study, we obtained DNA sequences of the mitochondrial <it>matR </it>gene from 174 species representing 72 families of putative rosids and examined phylogenetic relationships and phylogenetic utility of <it>matR </it>in rosids. We also inferred phylogenetic relationships within the "rosid clade" based on a combined data set of 91 taxa and four genes including <it>matR</it>, two plastid genes (<it>rbcL</it>, <it>atpB</it>), and one nuclear gene (18S rDNA).</p> <p>Results</p> <p>Comparison of mitochondrial <it>matR </it>and two plastid genes (<it>rbcL </it>and <it>atpB</it>) showed that the synonymous substitution rate in <it>matR </it>was approximately four times slower than those of <it>rbcL </it>and <it>atpB</it>; however, the nonsynonymous substitution rate in <it>matR </it>was relatively high, close to its synonymous substitution rate, indicating that the <it>matR </it>has experienced a relaxed evolutionary history. Analyses of our <it>matR </it>sequences supported the monophyly of malvids and most orders of the rosids. However, fabids did not form a clade; instead, the COM clade of fabids (Celastrales, Oxalidales, Malpighiales, and Huaceae) was sister to malvids. Analyses of the four-gene data set suggested that Geraniales and Myrtales were successively sister to other rosids, and that Crossosomatales were sister to malvids.</p> <p>Conclusion</p> <p>Compared to plastid genes such as <it>rbcL </it>and <it>atpB</it>, slowly evolving <it>matR </it>produced less homoplasious but not less informative substitutions. Thus, <it>matR </it>appears useful in higher-level angiosperm phylogenetics. Analysis of <it>matR </it>alone identified a novel deep relationship within rosids, the grouping of the COM clade of fabids and malvids, which was not resolved by any previous molecular analyses but recently suggested by floral structural features. Our four-gene analysis supported the placements of Geraniales, Myrtales at basal nodes of the rosid clade and placed Crossosomatales as sister to malvids. We also suggest that the core part of rosids should include fabids, malvids and Crossosomatales.</p

    Bridgeness: A Local Index on Edge Significance in Maintaining Global Connectivity

    Full text link
    Edges in a network can be divided into two kinds according to their different roles: some enhance the locality like the ones inside a cluster while others contribute to the global connectivity like the ones connecting two clusters. A recent study by Onnela et al uncovered the weak ties effects in mobile communication. In this article, we provide complementary results on document networks, that is, the edges connecting less similar nodes in content are more significant in maintaining the global connectivity. We propose an index named bridgeness to quantify the edge significance in maintaining connectivity, which only depends on local information of network topology. We compare the bridgeness with content similarity and some other structural indices according to an edge percolation process. Experimental results on document networks show that the bridgeness outperforms content similarity in characterizing the edge significance. Furthermore, extensive numerical results on disparate networks indicate that the bridgeness is also better than some well-known indices on edge significance, including the Jaccard coefficient, degree product and betweenness centrality.Comment: 10 pages, 4 figures, 1 tabl

    Relation between millimeter wavelengths emission and high-energy emission for active galactic nuclei

    Full text link
    After comparing the flux densities of a sample of active galactic nuclei detected by energetic gamma-ray experiment telescope at 90 and 230 GHz with the γ\gamma-ray emissions detected by Compton Gamma Ray Observatory and x-ray emission, a strong correlation between the emissions at the millimeter wavelength and the γ\gamma-ray emission is found. The average flux density of x-ray is almost proportional to the average flux density at the millimeter wavelength for quasars detected by energetic gamma-ray experiment telescope, which strongly supports the previous idea that the x-ray emissions of this kind sources are mainly produced by Synchrotron Self-Compton process.Comment: 6 pages, Chinese Physics Letters in pres

    C. elegans serine-threonine kinase KIN-29 modulates TGFβ signaling and regulates body size formation

    Get PDF
    BACKGROUND: In C. elegans there are two well-defined TGFβ-like signaling pathways. The Sma/Mab pathway affects body size morphogenesis, male tail development and spicule formation while the Daf pathway regulates entry into and exit out of the dauer state. To identify additional factors that modulate TGFβ signaling in the Sma/Mab pathway, we have undertaken a genetic screen for small animals and have identified kin-29. RESULTS: kin-29 encodes a protein with a cytoplasmic serine-threonine kinase and a novel C-terminal domain. The kinase domain is a distantly related member of the EMK (ELKL motif kinase) family, which interacts with microtubules. We show that the serine-threonine kinase domain has in vitro activity. kin-29 mutations result in small animals, but do not affect male tail morphology as do several of the Sma/Mab signal transducers. Adult worms are smaller than the wild-type, but also develop more slowly. Rescue by kin-29 is achieved by expression in neurons or in the hypodermis. Interaction with the dauer pathway is observed in double mutant combinations, which have been seen with Sma/Mab pathway mutants. We show that kin-29 is epistatic to the ligand dbl-1, and lies upstream of the Sma/Mab pathway target gene, lon-1. CONCLUSION: kin-29 is a new modulator of the Sma/Mab pathway. It functions in neurons and in the hypodermis to regulate body size, but does not affect all TGFβ outputs, such as tail morphogenesis

    P20-08. Glycosylation: an important factor in Env diversity

    Get PDF
    Supported by a CAVD Grant from the Bill and Melinda Gates Foundation

    Chiral extrapolation of lattice data for B-meson decay constant

    Full text link
    The B-meson decay constant fB has been calculated from unquenched lattice QCD in the unphysical region. For extrapolating the lattice data to the physical region, we propose a phenomenological functional form based on the effective chiral perturbation theory for heavy mesons, which respects both the heavy quark symmetry and the chiral symmetry, and the non-relativistic constituent quark model which is valid at large pion masses. The inclusion of pion loop corrections leads to nonanalytic contributions to fB when the pion mass is small. The finite-range regularization technique is employed for the resummation of higher order terms of the chiral expansion. We also take into account the finite volume effects in lattice simulations. The dependence on the parameters and other uncertainties in our model are discussed.Comment: 11 pages, 3 Postscript figures, accepted for publication in EPJ

    Whole-genome resequencing of wild and domestic sheep identifies genes associated with morphological and agronomic traits

    Get PDF
    Understanding the genetic changes underlying phenotypic variation in sheep (Ovis aries) may facilitate our efforts towards further improvement. Here, we report the deep resequencing of 248 sheep including the wild ancestor (O. orientalis), landraces, and improved breeds. We explored the sheep variome and selection signatures. We detected genomic regions harboring genes associated with distinct morphological and agronomic traits, which may be past and potential future targets of domestication, breeding, and selection. Furthermore, we found non-synonymous mutations in a set of plausible candidate genes and significant differences in their allele frequency distributions across breeds. We identified PDGFD as a likely causal gene for fat deposition in the tails of sheep through transcriptome, RT-PCR, qPCR, and Western blot analyses. Our results provide insights into the demographic history of sheep and a valuable genomic resource for future genetic studies and improved genome-assisted breeding of sheep and other domestic animals
    corecore