1,052 research outputs found

    The potential of Manitoba chokecherry as a source of high natural antioxidants

    Get PDF
    Consumption of fruits and vegetables is shown to be beneficial for protecting health and preventing some chronic diseases such as cancer, cardiovascular disease, and stroke. The positive health effects have been mainly due to the contributions of their natural antioxidant capacity. Chokecherry (Prunus virginiana), a unique fruit, is a member of the Rose family and native to North America. Here we demonstrate that chokecherry fruit with strong antioxidant capacity is available in Manitoba, and that its potent antioxidant potential can be developed for health benefits in value-added applications.These findings are useful for developing novel value-added antioxidant products from chokecherry because of its phytochemical profile associated with health protection and prevention of disease. The results provide evidence essential for breeding novel cultivars of fruit plants with strong natural antioxidants

    Quantitative atomic spectroscopy for primary thermometry

    Get PDF
    Quantitative spectroscopy has been used to measure accurately the Doppler-broadening of atomic transitions in 85^{85}Rb vapor. By using a conventional platinum resistance thermometer and the Doppler thermometry technique, we were able to determine kBk_B with a relative uncertainty of 4.1×10−44.1\times 10^{-4}, and with a deviation of 2.7×10−42.7\times 10^{-4} from the expected value. Our experiment, using an effusive vapour, departs significantly from other Doppler-broadened thermometry (DBT) techniques, which rely on weakly absorbing molecules in a diffusive regime. In these circumstances, very different systematic effects such as magnetic sensitivity and optical pumping are dominant. Using the model developed recently by Stace and Luiten, we estimate the perturbation due to optical pumping of the measured kBk_B value was less than 4×10−64\times 10^{-6}. The effects of optical pumping on atomic and molecular DBT experiments is mapped over a wide range of beam size and saturation intensity, indicating possible avenues for improvement. We also compare the line-broadening mechanisms, windows of operation and detection limits of some recent DBT experiments

    Iron porphyrin molecules on Cu(001): Influence of adlayers and ligands on the magnetic properties

    Get PDF
    The structural and magnetic properties of Fe octaethylporphyrin (OEP) molecules on Cu(001) have been investigated by means of density functional theory (DFT) methods and X-ray absorption spectroscopy. The molecules have been adsorbed on the bare metal surface and on an oxygen-covered surface, which shows a 2×22R45∘\sqrt{2}\times2\sqrt{2}R45^{\circ} reconstruction. In order to allow for a direct comparison between magnetic moments obtained from sum-rule analysis and DFT we calculate the dipolar term 77, which is also important in view of the magnetic anisotropy of the molecule. The measured X-ray magnetic circular dichroism shows a strong dependence on the photon incidence angle, which we could relate to a huge value of 77, e.g. on Cu(001) 77 amounts to -2.07\,\mbo{} for normal incidence leading to a reduction of the effective spin moment ms+7m_s + 7. Calculations have also been performed to study the influence of possible ligands such as Cl and O atoms on the magnetic properties of the molecule and the interaction between molecule and surface, because the experimental spectra display a clear dependence on the ligand, which is used to stabilize the molecule in the gas phase. Both types of ligands weaken the hybridization between surface and porphyrin molecule and change the magnetic spin state of the molecule, but the changes in the X-ray absorption are clearly related to residual Cl ligands.Comment: 17 figures, full articl

    The CARMENES search for exoplanets around M dwarfs - Photospheric parameters of target stars from high-resolution spectroscopy

    Full text link
    The new CARMENES instrument comprises two high-resolution and high-stability spectrographs that are used to search for habitable planets around M dwarfs in the visible and near-infrared regime via the Doppler technique. Characterising our target sample is important for constraining the physical properties of any planetary systems that are detected. The aim of this paper is to determine the fundamental stellar parameters of the CARMENES M-dwarf target sample from high-resolution spectra observed with CARMENES. We also include several M-dwarf spectra observed with other high-resolution spectrographs, that is CAFE, FEROS, and HRS, for completeness. We used a {chi}^2 method to derive the stellar parameters effective temperature T_eff, surface gravity log g, and metallicity [Fe/H] of the target stars by fitting the most recent version of the PHOENIX-ACES models to high-resolution spectroscopic data. These stellar atmosphere models incorporate a new equation of state to describe spectral features of low-temperature stellar atmospheres. Since T_eff, log g, and [Fe/H] show degeneracies, the surface gravity is determined independently using stellar evolutionary models. We derive the stellar parameters for a total of 300 stars. The fits achieve very good agreement between the PHOENIX models and observed spectra. We estimate that our method provides parameters with uncertainties of {sigma} T_eff = 51 K, {sigma} log g = 0.07, and {sigma} [Fe/H] = 0.16, and show that atmosphere models for low-mass stars have significantly improved in the last years. Our work also provides an independent test of the new PHOENIX-ACES models, and a comparison for other methods using low-resolution spectra. In particular, our effective temperatures agree well with literature values, while metallicities determined with our method exhibit a larger spread when compared to literature results

    ParkIndex: Validation and Application of a Pragmatic Measure of Park Access and Use

    Get PDF
    Composite metrics integrating park availability, features, and quality for a given address or neighborhood are lacking. The purposes of this study were to describe the validation, application, and demonstration of ParkIndex in four diverse communities. This study occurred in Fall 2018 in 128 census block groups within Seattle(WA), Brooklyn(NY), Raleigh(NC), and Greenville County(SC). All parks within a half-mile buffer were audited to calculate a composite park quality score, and select households provided data about use of proximal parks via an online, map-based survey. For each household, the number of parks, total park acreage, and average park quality score within one half-mile were calculated using GIS. Logistic regression was used to identify a parsimonious model predicting park use. ParkIndex values (representing the probability of park use) were mapped for all study areas and after scenarios involving the addition and renovation/improvement of parks. Out of 360 participants, 23.3% reported visiting a park within the past 30 days. The number of parks (OR = 1.36, 95% CI = 1.15–1.62), total park acreage (OR = 1.13, 95% CI = 1.07–1.19), and average park quality score (OR = 1.04, 95% CI = 1.01–1.06) within one half-mile were all associated with park use. Composite ParkIndex values across the study areas ranged from 0 to 100. Hypothetical additions of or renovations to study area parks resulted in ParkIndex increases of 22.7% and 19.2%, respectively. ParkIndex has substantial value for park and urban planners, citizens, and researchers as a common metric to facilitate awareness, decision-making, and intervention planning related to park access, environmental justice, and community health

    Thermobaric Effect on Melt-Textured MBa2_2Cu3_3O7−ή_{7-\delta} (M = Y, Nd)

    Full text link
    The effect of a short (10-30 min) thermobaric action (in the 1-5 GPa pressure and 700-1300∘^\circC temperature range) on the structure, superconductive and mechanical properties of melt-textured-MBa2_2Cu3_3O7−ή_{7-\delta} (M=Y, Nd) or MT-MBCO have been studied. The existence has been established of pressure-temperature--time conditions (2 GPa, 800∘^\circC for 30 min and 900-950∘^\circC for 15 min for MT-YBCO; 5 GPa, 850-900∘^\circC for 15 min for MT-NdBCO) the treatment under which allows superconductive properties of the materials (because of the contact with zirconia and high pressure) to be preserved or improved, mechanical characteristics increased and the materials condensed.Comment: 2 pages (tex), 2 figures (eps), to be presented at LT2
    • 

    corecore