100 research outputs found

    Influence of the Structure-Forming Agent on the Performance of Fe-N-C Catalysts

    Get PDF
    In this work, the influence of the structure-forming agent on the composition, morphology and oxygen reduction reaction (ORR) activity of Fe-N-C catalysts was investigated. As structure-forming agents (SFAs), dicyandiamide (DCDA) (nitrogen source) or oxalic acid (oxygen source) or mixtures thereof were used. For characterization, cyclic voltammetry and rotating disc electrode (RDE) experiments were performed in 0.1 M H₂SO₄. In addition to this, N₂ sorption measurements and Raman spectroscopy were performed for the structural, and elemental analysis for chemical characterization. The role of metal, nitrogen and carbon sources within the synthesis of Fe-N-C catalysts has been pointed out before. Here, we show that the optimum in terms of ORR activity is achieved if both N- and O-containing SFAs are used in almost similar fractions. All catalysts display a redox couple, where its position depends on the fractions of SFAs. The SFA has also a strong impact on the morphology: Catalysts that were prepared with a larger fraction of N-containing SFA revealed a higher order in graphitization, indicated by bands in the 2nd order range of the Raman spectra. Nevertheless, the optimum in terms of ORR activity is obtained for the catalyst with highest D/G band ratio. Therefore, the results indicate that the presence of an additional oxygen-containing SFA is beneficial within the preparation

    All that glisters is not gold: a comparison of electronic monitoring versus filled prescriptions – an observational study

    Get PDF
    BACKGROUND: Poor compliance with antihypertensive medication is assumed to be an important reason for unsatisfactory control of blood pressure. Poor compliance is difficult to detect. Each method of measuring compliance has its own strengths and weaknesses. The aim of the present study was to compare patient compliance with antihypertensive drugs as measured by two methods, electronic monitoring versus refill compliance. METHODS: 161 patients with a diagnosis of hypertension for at least a year prior to inclusion, and inadequate blood pressure control (systolic blood pressure ≥ 160 mmHg and/or diastolic blood pressure ≥ 95 mmHg) despite the use of antihypertensive drugs, were included. Patients' pharmacy records from 12 months prior to inclusion were obtained. Refill compliance was calculated as the number of days for which the pills were prescribed divided by the total number of days in this period. After inclusion compliance was measured with an electronic monitor that records time and date of each opening of the pillbox. Agreement between both compliance measures was calculated using Spearman's correlation coefficient and Cohen's kappa coefficient. RESULTS: There was very little agreement between the two measures. Whereas refill compliance showed a large range of values, compliance as measured by electronic monitoring was high in almost all patients with estimates between 90% and 100%. Cohen's kappa coefficient was 0.005. CONCLUSION: While electronic monitoring is often considered to be the gold standard for compliance measurements, our results suggest that a short-term electronic monitoring period with the patient being aware of electronic monitoring is probably insufficient to obtain valid compliance data. We conclude that there is a strong need for more studies that explore the effect of electronic monitoring on patient's compliance

    Comparative bioavailability: Eight commercial prednisone tablets

    Full text link
    Two four-treatment crossover bioavailability studies were performed in panels of 12 adult male volunteers with eight different commercial prednisone tablets. Plasma samples from the first study were assayed by radioimmunoassay for both prednisone and prednisolone. Plasma samples from the second study were assayed for prednisolone only. Statistical analyses of the data showed significant differences in the rate of appearance of prednisolone in plasma, but not in the amount convened to prednisolone. Some observations are made on the relationships between prednisone and prednisolone concentrations in plasma following oral administration of prednisone .Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/45064/1/10928_2005_Article_BF01086151.pd

    Bioavailability of prednisolone tablets

    Full text link
    Two fourtreatment crossover studies were performed using 12 adult male volunteers in each with seven different commercially available prednisolone tablets. Plasma samples were assayed for prednisolone by a radioimmunoassay method. Statisacal analyses of the data, by analysis of variance for crossover design (ANOVA), showed no significant differences among the treatment averages at any of the sampling times except at 0.25 and 4 hr in one of the studies. There were also no significant differences among the treatment averages for peak plasma level, time of peak plasma level, area 0–12 hr, area 0–24 hr, and the halflife of elimination of prednisolone. We conclude that the average plasma concentrations of prednisolone are superimposable in a statistical sense and that the tablets tested are bioequivalent. Results of dissolution studies of six tablets of each of the seven lots of prednisolone tablets, using deaerated water in the spin filter apparatus, are presented.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/45072/1/10928_2005_Article_BF01065399.pd

    Phylogenetic Diversity and Ecological Pattern of Ammonia-oxidizing Archaea in the Surface Sediments of the Western Pacific

    Get PDF
    The phylogenetic diversity of ammonia-oxidizing archaea (AOA) was surveyed in the surface sediments from the northern part of the South China Sea (SCS). The distribution pattern of AOA in the western Pacific was discussed through comparing the SCS with other areas in the western Pacific including Changjiang Estuary and the adjacent East China Sea where high input of anthropogenic nitrogen was evident, the tropical West Pacific Continental Margins close to the Philippines, the deep-sea methane seep sediments in the Okhotsk Sea, the cold deep sea of Northeastern Japan Sea, and the hydrothermal field in the Southern Okinawa Trough. These various environments provide a wide spectrum of physical and chemical conditions for a better understanding of the distribution pattern and diversities of AOA in the western Pacific. Under these different conditions, the distinct community composition between shallow and deep-sea sediments was clearly delineated based on the UniFrac PCoA and Jackknife Environmental Cluster analyses. Phylogenetic analyses showed that a few ammonia-oxidizing archaeal subclades in the marine water column/sediment clade and endemic lineages were indicative phylotypes for some environments. Higher phylogenetic diversity was observed in the Philippines while lower diversity in the hydrothermal vent habitat. Water depth and possibly with other environmental factors could be the main driving forces to shape the phylogenetic diversity of AOA observed, not only in the SCS but also in the whole western Pacific. The multivariate regression tree analysis also supported this observation consistently. Moreover, the functions of current and other climate factors were also discussed in comparison of phylogenetic diversity. The information collectively provides important insights into the ecophysiological requirements of uncultured ammonia-oxidizing archaeal lineages in the western Pacific Ocean

    Pathogen and Circadian Controlled 1 (PCC1) Protein Is Anchored to the Plasma Membrane and Interacts with Subunit 5 of COP9 Signalosome in Arabidopsis

    Get PDF
    The Pathogen and Circadian Controlled 1 (PCC1) gene, previously identified and further characterized as involved in defense to pathogens and stress-induced flowering, codes for an 81-amino acid protein with a cysteine-rich C-terminal domain. This domain is essential for homodimerization and anchoring to the plasma membrane. Transgenic plants with the ß- glucuronidase (GUS) reporter gene under the control of 1.1 kb promoter sequence of PCC1 gene display a dual pattern of expression. At early post-germination, PCC1 is expressed only in the root vasculature and in the stomata guard cells of cotyledons. During the transition from vegetative to reproductive development, PCC1 is strongly expressed in the vascular tissue of petioles and basal part of the leaf, and it further spreads to the whole limb in fully expanded leaves. This developmental pattern of expression together with the late flowering phenotype of long-day grown RNA interference (iPCC1) plants with reduced PCC1 expression pointed to a regulatory role of PCC1 in the photoperiod-dependent flowering pathway. iPCC1 plants are defective in light perception and signaling but are not impaired in the function of the core CO-FT module of the photoperiod-dependent pathway. The regulatory effect exerted by PCC1 on the transition to flowering as well as on other reported phenotypes might be explained by a mechanism involving the interaction with the subunit 5 of the COP9 signalosome (CSN).This work was funded by grants BIO2008-00839, BIO2011-27526 and CSD2007-0057 from Ministerio de Ciencia e Innovacion of Spain to J.L. A fellowship/contract of the FPU program of the Ministerio de Educacion y Ciencia (Spain) funded R.M. work. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.Mir Moreno, R.; Leon Ramos, J. (2014). Pathogen and Circadian Controlled 1 (PCC1) Protein Is Anchored to the Plasma Membrane and Interacts with Subunit 5 of COP9 Signalosome in Arabidopsis. PLoS ONE. 1(9):1-14. https://doi.org/10.1371/journal.pone.0087216S11419Sauerbrunn, N., & Schlaich, N. L. (2004). PCC1 : a merging point for pathogen defence and circadian signalling in Arabidopsis. Planta, 218(4), 552-561. doi:10.1007/s00425-003-1143-zSEGARRA, S., MIR, R., MARTÍNEZ, C., & LEÓN, J. (2009). Genome-wide analyses of the transcriptomes of salicylic acid-deficient versus wild-type plants uncover Pathogen and Circadian Controlled 1 (PCC1) as a regulator of flowering time in Arabidopsis. Plant, Cell & Environment, 33(1), 11-22. doi:10.1111/j.1365-3040.2009.02045.xVenancio, T. M., & Aravind, L. (2009). CYSTM, a novel cysteine-rich transmembrane module with a role in stress tolerance across eukaryotes. Bioinformatics, 26(2), 149-152. doi:10.1093/bioinformatics/btp647Lau, O. S., & Deng, X. W. (2010). Plant hormone signaling lightens up: integrators of light and hormones. Current Opinion in Plant Biology, 13(5), 571-577. doi:10.1016/j.pbi.2010.07.001Seo, M., Nambara, E., Choi, G., & Yamaguchi, S. (2008). Interaction of light and hormone signals in germinating seeds. Plant Molecular Biology, 69(4), 463-472. doi:10.1007/s11103-008-9429-yDe Lucas, M., Davière, J.-M., Rodríguez-Falcón, M., Pontin, M., Iglesias-Pedraz, J. M., Lorrain, S., … Prat, S. (2008). A molecular framework for light and gibberellin control of cell elongation. Nature, 451(7177), 480-484. doi:10.1038/nature06520Feng, S., Martinez, C., Gusmaroli, G., Wang, Y., Zhou, J., Wang, F., … Deng, X. W. (2008). Coordinated regulation of Arabidopsis thaliana development by light and gibberellins. Nature, 451(7177), 475-479. doi:10.1038/nature06448Mutasa-Gottgens, E., & Hedden, P. (2009). Gibberellin as a factor in floral regulatory networks. Journal of Experimental Botany, 60(7), 1979-1989. doi:10.1093/jxb/erp040Bastian, R., Dawe, A., Meier, S., Ludidi, N., Bajic, V. B., & Gehring, C. (2010). Gibberellic acid and cGMP-dependent transcriptional regulation inArabidopsis thaliana. Plant Signaling & Behavior, 5(3), 224-232. doi:10.4161/psb.5.3.10718Yu, S., Galvão, V. C., Zhang, Y.-C., Horrer, D., Zhang, T.-Q., Hao, Y.-H., … Wang, J.-W. (2012). Gibberellin Regulates the Arabidopsis Floral Transition through miR156-Targeted SQUAMOSA PROMOTER BINDING–LIKE Transcription Factors. The Plant Cell, 24(8), 3320-3332. doi:10.1105/tpc.112.101014Arc, E., Galland, M., Cueff, G., Godin, B., Lounifi, I., Job, D., & Rajjou, L. (2011). Reboot the system thanks to protein post-translational modifications and proteome diversity: How quiescent seeds restart their metabolism to prepare seedling establishment. PROTEOMICS, 11(9), 1606-1618. doi:10.1002/pmic.201000641Dill, A., Thomas, S. G., Hu, J., Steber, C. M., & Sun, T. (2004). The Arabidopsis F-Box Protein SLEEPY1 Targets Gibberellin Signaling Repressors for Gibberellin-Induced Degradation. The Plant Cell, 16(6), 1392-1405. doi:10.1105/tpc.020958Wang, F., & Deng, X. W. (2011). Plant ubiquitin-proteasome pathway and its role in gibberellin signaling. Cell Research, 21(9), 1286-1294. doi:10.1038/cr.2011.118Hotton, S. K., & Callis, J. (2008). Regulation of Cullin RING Ligases. Annual Review of Plant Biology, 59(1), 467-489. doi:10.1146/annurev.arplant.58.032806.104011Cope, G. A. (2002). Role of Predicted Metalloprotease Motif of Jab1/Csn5 in Cleavage of Nedd8 from Cul1. Science, 298(5593), 608-611. doi:10.1126/science.1075901Gusmaroli, G., Figueroa, P., Serino, G., & Deng, X. W. (2007). Role of the MPN Subunits in COP9 Signalosome Assembly and Activity, and Their Regulatory Interaction with Arabidopsis Cullin3-Based E3 Ligases. The Plant Cell, 19(2), 564-581. doi:10.1105/tpc.106.047571Serino, G., & Deng, X.-W. (2003). THECOP9 SIGNALOSOME: Regulating Plant Development Through the Control of Proteolysis. Annual Review of Plant Biology, 54(1), 165-182. doi:10.1146/annurev.arplant.54.031902.134847Stratmann, J. W., & Gusmaroli, G. (2012). Many jobs for one good cop – The COP9 signalosome guards development and defense. Plant Science, 185-186, 50-64. doi:10.1016/j.plantsci.2011.10.004Lozano-Juste, J., & León, J. (2011). Nitric Oxide Regulates DELLA Content and PIF Expression to Promote Photomorphogenesis in Arabidopsis. Plant Physiology, 156(3), 1410-1423. doi:10.1104/pp.111.177741Nakagawa, T., Kurose, T., Hino, T., Tanaka, K., Kawamukai, M., Niwa, Y., … Kimura, T. (2007). Development of series of gateway binary vectors, pGWBs, for realizing efficient construction of fusion genes for plant transformation. Journal of Bioscience and Bioengineering, 104(1), 34-41. doi:10.1263/jbb.104.34Fromont-Racine, M., Rain, J.-C., & Legrain, P. (1997). Toward a functional analysis of the yeast genome through exhaustive two-hybrid screens. Nature Genetics, 16(3), 277-282. doi:10.1038/ng0797-277Belda-Palazón B, Ruiz L, Martí E, Tárraga S, Tiburcio AF, et al.. (2012) Aminopropyltransferases involved in polyamine biosynthesis localize preferentially in the nucleus of plant cells. PLoS One 7(10), e46907.Simon, R., Igeño, M. I., & Coupland, G. (1996). Activation of floral meristem identity genes in Arabidopsis. Nature, 384(6604), 59-62. doi:10.1038/384059a0Martínez, C., Pons, E., Prats, G., & León, J. (2003). Salicylic acid regulates flowering time and links defence responses and reproductive development. The Plant Journal, 37(2), 209-217. doi:10.1046/j.1365-313x.2003.01954.xKyte, J., & Doolittle, R. F. (1982). A simple method for displaying the hydropathic character of a protein. Journal of Molecular Biology, 157(1), 105-132. doi:10.1016/0022-2836(82)90515-0Marmagne, A., Rouet, M.-A., Ferro, M., Rolland, N., Alcon, C., Joyard, J., … Ephritikhine, G. (2004). Identification of New Intrinsic Proteins inArabidopsisPlasma Membrane Proteome. Molecular & Cellular Proteomics, 3(7), 675-691. doi:10.1074/mcp.m400001-mcp200Nühse, T. S., Stensballe, A., Jensen, O. N., & Peck, S. C. (2004). Phosphoproteomics of the Arabidopsis Plasma Membrane and a New Phosphorylation Site Database. The Plant Cell, 16(9), 2394-2405. doi:10.1105/tpc.104.023150Kobayashi, Y., & Weigel, D. (2007). Move on up, it’s time for change mobile signals controlling photoperiod-dependent flowering. Genes & Development, 21(19), 2371-2384. doi:10.1101/gad.1589007Jaeger, K. E., & Wigge, P. A. (2007). FT Protein Acts as a Long-Range Signal in Arabidopsis. Current Biology, 17(12), 1050-1054. doi:10.1016/j.cub.2007.05.008Mathieu, J., Warthmann, N., Küttner, F., & Schmid, M. (2007). Export of FT Protein from Phloem Companion Cells Is Sufficient for Floral Induction in Arabidopsis. Current Biology, 17(12), 1055-1060. doi:10.1016/j.cub.2007.05.009Mir, R., Hernández, M. L., Abou-Mansour, E., Martínez-Rivas, J. M., Mauch, F., Métraux, J.-P., & León, J. (2013). Pathogen and Circadian Controlled 1 (PCC1) regulates polar lipid content, ABA-related responses, and pathogen defence in Arabidopsis thaliana. Journal of Experimental Botany, 64(11), 3385-3395. doi:10.1093/jxb/ert177Nordgård, O., Dahle, Ø., Andersen, T. Ø., & Gabrielsen, O. S. (2001). JAB1/CSN5 interacts with the GAL4 DNA binding domain: A note of caution about two-hybrid interactions. Biochimie, 83(10), 969-971. doi:10.1016/s0300-9084(01)01329-3Kwok, S. F., Staub, J. M., & Deng, X.-W. (1999). Characterization of two subunits of Arabidopsis 19S proteasome regulatory complex and its possible interaction with the COP9 complex 1 1Edited by J. Karn. Journal of Molecular Biology, 285(1), 85-95. doi:10.1006/jmbi.1998.2315Nezames, C. D., & Deng, X. W. (2012). The COP9 Signalosome: Its Regulation of Cullin-Based E3 Ubiquitin Ligases and Role in Photomorphogenesis. Plant Physiology, 160(1), 38-46. doi:10.1104/pp.112.198879Moon, J., Parry, G., & Estelle, M. (2004). The Ubiquitin-Proteasome Pathway and Plant Development. The Plant Cell, 16(12), 3181-3195. doi:10.1105/tpc.104.161220Dreher, K., & Callis, J. (2007). Ubiquitin, Hormones and Biotic Stress in Plants. Annals of Botany, 99(5), 787-822. doi:10.1093/aob/mcl255Parry, G., & Estelle, M. (2004). Regulation of cullin-based ubiquitin ligases by the Nedd8/RUB ubiquitin-like proteins. Seminars in Cell & Developmental Biology, 15(2), 221-229. doi:10.1016/j.semcdb.2003.12.003Wee, S., Geyer, R. K., Toda, T., & Wolf, D. A. (2005). CSN facilitates Cullin–RING ubiquitin ligase function by counteracting autocatalytic adapter instability. Nature Cell Biology, 7(4), 387-391. doi:10.1038/ncb1241Kuramata, M., Masuya, S., Takahashi, Y., Kitagawa, E., Inoue, C., Ishikawa, S., … Kusano, T. (2008). Novel Cysteine-Rich Peptides from Digitaria ciliaris and Oryza sativa Enhance Tolerance to Cadmium by Limiting its Cellular Accumulation. Plant and Cell Physiology, 50(1), 106-117. doi:10.1093/pcp/pcn175Zeng, W., Melotto, M., & He, S. Y. (2010). Plant stomata: a checkpoint of host immunity and pathogen virulence. Current Opinion in Biotechnology, 21(5), 599-603. doi:10.1016/j.copbio.2010.05.006Wigge, P. A. (2011). FT, A Mobile Developmental Signal in Plants. Current Biology, 21(9), R374-R378. doi:10.1016/j.cub.2011.03.038Kardailsky, I. (1999). Activation Tagging of the Floral Inducer FT. Science, 286(5446), 1962-1965. doi:10.1126/science.286.5446.1962Srikanth, A., & Schmid, M. (2011). Regulation of flowering time: all roads lead to Rome. Cellular and Molecular Life Sciences, 68(12), 2013-2037. doi:10.1007/s00018-011-0673-yGalvao, V. C., Horrer, D., Kuttner, F., & Schmid, M. (2012). Spatial control of flowering by DELLA proteins in Arabidopsis thaliana. Development, 139(21), 4072-4082. doi:10.1242/dev.080879Cerdán, P. D., & Chory, J. (2003). Regulation of flowering time by light quality. Nature, 423(6942), 881-885. doi:10.1038/nature01636Guo, H. (1998). Regulation of Flowering Time by Arabidopsis Photoreceptors. Science, 279(5355), 1360-1363. doi:10.1126/science.279.5355.1360Liu, B., Zuo, Z., Liu, H., Liu, X., & Lin, C. (2011). Arabidopsis cryptochrome 1 interacts with SPA1 to suppress COP1 activity in response to blue light. Genes & Development, 25(10), 1029-1034. doi:10.1101/gad.2025011Weidler, G., zur Oven-Krockhaus, S., Heunemann, M., Orth, C., Schleifenbaum, F., Harter, K., … Batschauer, A. (2012). Degradation of Arabidopsis CRY2 Is Regulated by SPA Proteins and Phytochrome A. The Plant Cell, 24(6), 2610-2623. doi:10.1105/tpc.112.09821

    Communities of Archaea and Bacteria in a Subsurface Radioactive Thermal Spring in the Austrian Central Alps, and Evidence of Ammonia-Oxidizing Crenarchaeota

    No full text
    Scanning electron microscopy revealed great morphological diversity in biofilms from several largely unexplored subterranean thermal Alpine springs, which contain radium 226 and radon 222. A culture-independent molecular analysis of microbial communities on rocks and in the water of one spring, the “Franz-Josef-Quelle” in Bad Gastein, Austria, was performed. Four hundred fifteen clones were analyzed. One hundred thirty-two sequences were affiliated with 14 bacterial operational taxonomic units (OTUs) and 283 with four archaeal OTUs. Rarefaction analysis indicated a high diversity of bacterial sequences, while archaeal sequences were less diverse. The majority of the cloned archaeal 16S rRNA gene sequences belonged to the soil-freshwater-subsurface (1.1b) crenarchaeotic group; other representatives belonged to the freshwater-wastewater-soil (1.3b) group, except one clone, which was related to a group of uncultivated Euryarchaeota. These findings support recent reports that Crenarchaeota are not restricted to high-temperature environments. Most of the bacterial sequences were related to the Proteobacteria (α, β, γ, and δ), Bacteroidetes, and Planctomycetes. One OTU was allied with Nitrospina sp. (δ-Proteobacteria) and three others grouped with Nitrospira. Statistical analyses suggested high diversity based on 16S rRNA gene analyses; the rarefaction plot of archaeal clones showed a plateau. Since Crenarchaeota have been implicated recently in the nitrogen cycle, the spring environment was probed for the presence of the ammonia monooxygenase subunit A (amoA) gene. Sequences were obtained which were related to crenarchaeotic amoA genes from marine and soil habitats. The data suggested that nitrification processes are occurring in the subterranean environment and that ammonia may possibly be an energy source for the resident communities
    corecore