347 research outputs found

    High refractive index films of polymer nanocomposites

    Get PDF
    Solutions of PbS particles and gelatin were used for the preparation of nanocomposites by a spin-coating process. This allows for the preparation of nanocomposite films with controlled thickness, e.g., between 40 nm and 2 μm for a film containing 45 wt.% PbS. Surface roughness and film thickness were investigated by surface profilometry and scanning electron microscopy (SEM). The refractive index at 632.8 nm can be expressed by a linear function of the volume fraction of PbS in the range of 0 to 55 vol. % PbS. In this range, the refractive index increases from 1.5 to 2.5 with increasing PbS ratio and belongs, therefore, to the highest refractive indices known for polymeric composite material

    An Improved Method of RNA Isolation from Loblolly Pine (P. taeda L.) and Other Conifer Species

    Get PDF
    Tissues isolated from conifer species, particularly those belonging to the Pinaceae family, such as loblolly pine (Pinus taeda L.), contain high concentrations of phenolic compounds and polysaccharides that interfere with RNA purification. Isolation of high-quality RNA from these species requires rigorous tissue collection procedures in the field and the employment of an RNA isolation protocol comprised of multiple organic extraction steps in order to isolate RNA of sufficient quality for microarray and other genomic analyses. The isolation of high-quality RNA from field-collected loblolly pine samples can be challenging, but several modifications to standard tissue and RNA isolation procedures greatly improve results. The extent of general RNA degradation increases if samples are not properly collected and transported from the field, especially during large-scale harvests. Total RNA yields can be increased significantly by pulverizing samples in a liquid nitrogen freezer mill prior to RNA isolation, especially when samples come from woody tissues. This is primarily due to the presence of oxidizing agents, such as phenolic compounds, and polysaccharides that are both present at high levels in extracts from the woody tissues of most conifer species. If not removed, these contaminants can carry over leading to problems, such as RNA degradation, that result in low yields and a poor quality RNA sample. Carryover of phenolic compounds, as well as polysaccharides, can also reduce or even completely eliminate the activity of reverse transcriptase or other polymerases commonly used for cDNA synthesis. In particular, RNA destined to be used as template for double-stranded cDNA synthesis in the generation of cDNA libraries, single-stranded cDNA synthesis for PCR or qPCR's, or for the synthesis of microarray target materials must be of the highest quality if researchers expect to obtain optimal results. RNA isolation techniques commonly employed for many other plant species are often insufficient in their ability to remove these contaminants from conifer samples and thus do not yield total RNA samples suitable for downstream manipulations. In this video we demonstrate methods for field collection of conifer tissues, beginning with the felling of a forty year-old tree, to the harvesting of phloem, secondary xylem, and reaction wood xylem. We also demonstrate an RNA isolation protocol that has consistently yielded high-quality RNA for subsequent enzymatic manipulations

    Antifactor Xa activity in critically ill patients receiving antithrombotic prophylaxis with standard dosages of certoparin: a prospective, clinical study

    Get PDF
    INTRODUCTION: Deep venous thrombosis with subsequent pulmonary embolism or post-thrombotic syndrome is a feared complication in the intensive care unit. Therefore, routine prophylactic anticoagulation is widely recommended. Aside from unfractionated heparin, low molecular weight heparins, such as certoparin, have become increasingly used for prophylactic anticoagulation in critically ill patients. In this prospective study, we evaluated the potency of 3,000 IU certoparin administered once daily to reach antithrombotic antifactor Xa (aFXa) levels of 0.1 to 0.3 IU/ml in 62 critically ill patients. METHODS: AFXa levels were determined 4, 12 and 24 h after injection of certoparin. Prothrombin time, activated partial thromboplastin time, antithrombin, fibrinogen, hemoglobin, platelet count, serum urea and creatinine concentrations were documented before and 12 and 24 h after injection of certoparin. RESULTS: Four hours after certoparin injection (n = 32), 28% of patients were within the antithrombotic aFXa range. After 12 and 24 h, 6% achieved antithrombotic aFXa levels. Because of a severe pulmonary embolism in one study patient, an interim analysis was performed, and the dosage of certoparin was increased to 3,000 IU twice daily. This regime attained recommended antithrombotic aFXa levels in 47%, 27%, 40% and 30% of patients at 4, 12, 16 and 24 h, respectively, after twice daily certoparin injection (n = 30). Antithrombin and fibrinogen concentrations slightly increased during the observation period. Low antithrombin concentrations before certoparin were independently correlated with underdosing of certoparin. Patients with aFXa levels <0.1 IU/ml 4 h after certoparin injection required vasopressors more often and had lower serum concentrations of creatinine and urea than patients with antithrombotic aFXa levels. CONCLUSION: Standard dosages of certoparin of 3,000 IU given once or twice daily are ineffective for attaining the recommended aFXa levels of 0.1 to 0.3 IU/ml in critically ill patients. Low antithrombin levels before certoparin administration were independently associated with low aFXa levels. Renal function and vasopressor therapy may further influence the effectiveness of certoparin in ensuring adequate antithrombotic prophylaxis

    FACT -- The G-APD revolution in Cherenkov astronomy

    Full text link
    Since two years, the FACT telescope is operating on the Canary Island of La Palma. Apart from its purpose to serve as a monitoring facility for the brightest TeV blazars, it was built as a major step to establish solid state photon counters as detectors in Cherenkov astronomy. The camera of the First G-APD Cherenkov Telesope comprises 1440 Geiger-mode avalanche photo diodes (G-APD), equipped with solid light guides to increase the effective light collection area of each sensor. Since no sense-line is available, a special challenge is to keep the applied voltage stable although the current drawn by the G-APD depends on the flux of night-sky background photons significantly varying with ambient light conditions. Methods have been developed to keep the temperature and voltage dependent response of the G-APDs stable during operation. As a cross-check, dark count spectra with high statistics have been taken under different environmental conditions. In this presentation, the project, the developed methods and the experience from two years of operation of the first G-APD based camera in Cherenkov astronomy under changing environmental conditions will be presented.Comment: Proceedings of the Nuclear Science Symposium and Medical Imaging Conference (IEEE-NSS/MIC), 201

    Activation of defence pathways in Scots pine bark after feeding by pine weevil (Hylobius abietis)

    Get PDF
    Background: During their lifetime, conifer trees are exposed to numerous herbivorous insects. To protect themselves against pests, trees have developed a broad repertoire of protective mechanisms. Many of the plant's defence reactions are activated upon an insect attack, and the underlying regulatory mechanisms are not entirely understood yet, in particular in conifer trees. Here, we present the results of our studies on the transcriptional response and the volatile compounds production of Scots pine (Pinus sylvestris) upon the large pine weevil (Hylobius abietis) feeding. Results: Transcriptional response of Scots pine to the weevil attack was investigated using a novel customised 36.4 K Pinus taeda microarray. The weevil feeding caused large-scale changes in the pine transcriptome. In total, 774 genes were significantly up-regulated more than 4-fold (p = 0.05), whereas 64 genes were significantly down-regulated more than 4-fold. Among the up-regulated genes, we could identify genes involved in signal perception, signalling pathways, transcriptional regulation, plant hormone homeostasis, secondary metabolism and defence responses. The weevil feeding on stem bark of pine significantly increased the total emission of volatile organic compounds from the undamaged stem bark area. The emission levels of monoterpenes and sesquiterpenes were also increased. Interestingly, we could not observe any correlation between the increased production of the terpenoid compounds and expression levels of the terpene synthase-encoding genes. Conclusions: The obtained data provide an important insight into the transcriptional response of conifer trees to insect herbivory and illustrate the massive changes in the host transcriptome upon insect attacks. Moreover, many of the induced pathways are common between conifers and angiosperms. The presented results are the first ones obtained by the use of a microarray platform with an extended coverage of pine transcriptome (36.4 K cDNA elements). The platform will further facilitate the identification of resistance markers with the direct relevance for conifer tree breeding.Peer reviewe

    FACT - The First G-APD Cherenkov Telescope: Status and Results

    Full text link
    The First G-APD Cherenkov telescope (FACT) is the first telescope using silicon photon detectors (G-APD aka. SiPM). It is built on the mount of the HEGRA CT3 telescope, still located at the Observatorio del Roque de los Muchachos, and it is successfully in operation since Oct. 2011. The use of Silicon devices promises a higher photon detection efficiency, more robustness and higher precision than photo-multiplier tubes. The FACT collaboration is investigating with which precision these devices can be operated on the long-term. Currently, the telescope is successfully operated from remote and robotic operation is under development. During the past months of operation, the foreseen monitoring program of the brightest known TeV blazars has been carried out, and first physics results have been obtained including a strong flare of Mrk501. An instantaneous flare alert system is already in a testing phase. This presentation will give an overview of the project and summarize its goals, status and first results
    corecore