9 research outputs found

    Transcriptional Responses of Leptospira interrogans to Host Innate Immunity: Significant Changes in Metabolism, Oxygen Tolerance, and Outer Membrane

    Get PDF
    Leptospirosis is an important tropical disease around the world, particularly in humid tropical and subtropical countries. As a major pathogen of this disease, Leptospira interrogans can be shed from the urine of reservoir hosts, survive in soil and water, and infect humans through broken skin or mucous membranes. Recently, host adaptability and immune evasion of L. interrogans to host innate immunity was partially elucidated in infection or animal models. A better understanding of the molecular mechanisms of L. interrogans in response to host innate immunity is required to learn the nature of early leptospirosis. This study focused on the transcriptome of L. interrogans during host immune cells interaction. Significant changes in energy metabolism, oxygen tolerance and outer membrane protein profile were identified as potential immune evasion strategies by pathogenic Leptospira during the early stage of infection. The major outer membrane proteins (OMPs) of L. interrogans may be regulated by the major OmpR specific transcription factor (LB333). These results provide a foundation for further studying the pathogenesis of leptospirosis, as well as identifying gene regulatory networks in Leptospira spp

    Complete Genome Sequence of Mycoplasma suis and Insights into Its Biology and Adaption to an Erythrocyte Niche

    Get PDF
    Mycoplasma suis, the causative agent of porcine infectious anemia, has never been cultured in vitro and mechanisms by which it causes disease are poorly understood. Thus, the objective herein was to use whole genome sequencing and analysis of M. suis to define pathogenicity mechanisms and biochemical pathways. M. suis was harvested from the blood of an experimentally infected pig. Following DNA extraction and construction of a paired end library, whole-genome sequencing was performed using GS-FLX (454) and Titanium chemistry. Reads on paired-end constructs were assembled using GS De Novo Assembler and gaps closed by primer walking; assembly was validated by PFGE. Glimmer and Manatee Annotation Engine were used to predict and annotate protein-coding sequences (CDS). The M. suis genome consists of a single, 742,431 bp chromosome with low G+C content of 31.1%. A total of 844 CDS, 3 single copies, unlinked rRNA genes and 32 tRNAs were identified. Gene homologies and GC skew graph show that M. suis has a typical Mollicutes oriC. The predicted metabolic pathway is concise, showing evidence of adaptation to blood environment. M. suis is a glycolytic species, obtaining energy through sugars fermentation and ATP-synthase. The pentose-phosphate pathway, metabolism of cofactors and vitamins, pyruvate dehydrogenase and NAD+ kinase are missing. Thus, ribose, NADH, NADPH and coenzyme A are possibly essential for its growth. M. suis can generate purines from hypoxanthine, which is secreted by RBCs, and cytidine nucleotides from uracil. Toxins orthologs were not identified. We suggest that M. suis may cause disease by scavenging and competing for host' nutrients, leading to decreased life-span of RBCs. In summary, genome analysis shows that M. suis is dependent on host cell metabolism and this characteristic is likely to be linked to its pathogenicity. The prediction of essential nutrients will aid the development of in vitro cultivation systems

    In Vitro Identification of Novel Plasminogen-Binding Receptors of the Pathogen Leptospira interrogans

    Get PDF
    Background: Leptospirosis is a multisystem disease caused by pathogenic strains of the genus Leptospira. We have reported that Leptospira are able to bind plasminogen (PLG), to generate active plasmin in the presence of activator, and to degrade purified extracellular matrix fibronectin. Methodology/Principal Findings: We have now cloned, expressed and purified 14 leptospiral recombinant proteins. The proteins were confirmed to be surface exposed by immunofluorescence microscopy and were evaluated for their ability to bind plasminogen (PLG). We identified eight as PLG-binding proteins, including the major outer membrane protein LipL32, the previously published rLIC12730, rLIC10494, Lp29, Lp49, LipL40 and MPL36, and one novel leptospiral protein, rLIC12238. Bound PLG could be converted to plasmin by the addition of urokinase-type PLG activator (uPA), showing specific proteolytic activity, as assessed by its reaction with the chromogenic plasmin substrate, D-Val-Leu-Lys 4-nitroanilide dihydrochloride. The addition of the lysine analog 6-aminocaproic acid (ACA) inhibited the protein-PLG interaction, thus strongly suggesting the involvement of lysine residues in plasminogen binding. The binding of leptospiral surface proteins to PLG was specific, dose-dependent and saturable. PLG and collagen type IV competed with LipL32 protein for the same binding site, whereas separate binding sites were observed for plasma fibronectin. Conclusions/Significance: PLG-binding/activation through the proteins/receptors on the surface of Leptospira could help the bacteria to specifically overcome tissue barriers, facilitating its spread throughout the host.FAPESP (Fundacao de Amparo a Pesquisa do Estado de Sao Paulo)CNPq (Conselho Nacional de Desenvolvimento Cientifico e Tecnologico)Fundacao Butantan, BrazilFAPESP (Brazil

    Leptospira: the dawn of the molecular genetics era for an emerging zoonotic pathogen.

    No full text
    International audienceLeptospirosis is a zoonotic disease that has emerged as an important cause of morbidity and mortality among impoverished populations. One hundred years after the discovery of the causative spirochaetal agent, little is understood about Leptospira spp. pathogenesis, which in turn has hampered the development of new intervention strategies to address this neglected disease. However, the recent availability of complete genome sequences for Leptospira spp. and the discovery of genetic tools for their transformation have led to important insights into the biology of these pathogens and their pathogenesis. We discuss the life cycle of the bacterium, the recent advances in our understanding and the implications for the future prevention of leptospirosis

    Leptospira: the dawn of the molecular genetics era for an emerging zoonotic pathogen

    No full text

    The Family Leptospiraceae

    No full text
    corecore