20 research outputs found

    Metal Core Bonding Motifs of Monodisperse Icosahedral Au13 and Larger Au Monolayer-Protected Clusters As Revealed by X-ray Absorption Spectroscopy and Transmission Electron Microscopy

    Get PDF
    The atomic metal core structures of the subnanometer clusters Au13[PPh3]4[S(CH2)11CH3]2Cl2 (1) and Au13[PPh3]4[S(CH2)11CH3]4 (2) were characterized using advanced methods of electron microscopy and X-ray absorption spectroscopy. The number of gold atoms in the cores of these two clusters was determined quantitatively using high-angle annular dark field scanning transmission electron microscopy. Multiple-scattering-path analyses of extended X-ray absorption fine structure (EXAFS) spectra suggest that the Au metal cores of each of these complexes adopt an icosahedral structure with a relaxation of the icosahedral strain. Data from microscopy and spectroscopy studies extended to larger thiolate-protected gold clusters showing a broader distribution in nanoparticle core sizes (183 ± 116 Au atoms) reveal a bulklike fcc structure. These results further support a model for the monolayer-protected clusters (MPCs) in which the thiolate ligands bond preferentially at 3-fold atomic sites on the nanoparticle surface, establishing an average composition for the MPC of Au180[S(CH2)11CH3]40. Results from EXAFS measurements of a gold(I) dodecanethiolate polymer are presented that offer an alternative explanation for observations in previous reports that were interpreted as indicating Au MPC structures consisting of a Au core, Au2S shell, and thiolate monolayer

    High Speed EELS and EFTEM Analysis across the Visual Cortex

    No full text

    4. Glaubenslehre als Wissenschaft

    No full text

    Optimization of in situ substrate surface treatment in a cathodic arc plasma: A study by TEM and plasma diagnostics

    No full text
    Cr ions generated by a steered cathodic arc discharge are utilized to control and enhance the adhesion properties of 3.5 mum thick TixAl(1-x)N based coatings deposited on high speed steel substrates, A two-step etching procedure (negative substrate bias, U-S=1200 V) is suggested, operating the arc discharge initially in an Ar atmosphere (p(Ar)=0.09 Pa.. 6.75x10(-4) Torr) to achieve predominantly metal removing effects (etching rate: 9 nm min(-1)) with a mixture of Ar and Cr ions. In the second stage at residual gas pressure level (p(Ar) less than or equal to 0.006 Pa, 4.5x10(-5) Torr, etching rate: 4 nm min(-1)) pure Cr ion irradiation leads to a Cr penetration as deep as 20 nm with a Cr accumulation of approximately 37 at % at the interface substrate/coating. This procedure promotes localized epitaxial growth of TixAl(1-x)N and enhances critical load values up to 85 +/-5 N. (C) 2001 American Vacuum Society

    Sub-Nanometer Au Monolayer-Protected Clusters Exhibiting Molecule-like Electronic Behavior: Quantitative High-Angle Annular Dark-Field Scanning Transmission Electron Microscopy and Electrochemical Characterization of Clusters with Precise Atomic Stoichiom

    Get PDF
    The synthesis and characterization of the clusters Au13[PPh3]4[S(CH2)11CH3]2Cl2 (1) and Au13[PPh3]4[S(CH2)11-CH3]4 (2) are described. These mixed-ligand, sub-nanometer clusters, prepared via exchange of dodecanethiol onto phosphine-halide gold clusters, show enhanced stability relative to the parent. The characterization of these clusters features the precise determination of the number of gold atoms in the cluster cores using highangle annular dark-field scanning transmission electron microscopy, allowing the assignment of 13 gold atoms ((3 atoms) to the composition of both cluster molecules. Electrochemical and optical measurements reveal discrete molecular orbital levels and apparent energy gaps of 1.6-1.7 eV for the two cluster molecules. The electrochemical measurements further indicate that the Au13[PPh3]4[S(CH2)11CH3]2Cl2 cluster undergoes an overall two-electron reduction. The electrochemical and spectroscopic properties of the two Au13 cluster molecules are compared with those of a secondary synthetic product, which proved to be larger Au thiolatederivatized monolayer-protected clusters with an average core of Au180. The latter shows behavior fully consistent with the adoption of metallic-like properties

    Metal Core Bonding Motifs of Monodisperse Icosahedral Au13 and Larger Au Monolayer-Protected Clusters As Revealed by X-ray Absorption Spectroscopy and Transmission Electron Microscopy

    Get PDF
    The atomic metal core structures of the subnanometer clusters Au13[PPh3]4[S(CH2)11CH3]2Cl2 (1) and Au13-[PPh3]4[S(CH2)11CH3]4 (2) were characterized using advanced methods of electron microscopy and X-ray absorption spectroscopy. The number of gold atoms in the cores of these two clusters was determined quantitatively using high-angle annular dark field scanning transmission electron microscopy. Multiplescattering-path analyses of extended X-ray absorption fine structure (EXAFS) spectra suggest that the Au metal cores of each of these complexes adopt an icosahedral structure with a relaxation of the icosahedral strain. Data from microscopy and spectroscopy studies extended to larger thiolate-protected gold clusters showing a broader distribution in nanoparticle core sizes (183 ( 116 Au atoms) reveal a bulklike fcc structure. These results further support a model for the monolayer-protected clusters (MPCs) in which the thiolate ligands bond preferentially at 3-fold atomic sites on the nanoparticle surface, establishing an average composition for the MPC of Au180[S(CH2)11CH3]40. Results from EXAFS measurements of a gold(I) dodecanethiolate polymer are presented that offer an alternative explanation for observations in previous reports that were interpreted as indicating Au MPC structures consisting of a Au core, Au2S shell, and thiolate monolayer

    Protection des cultures: de l'agrochimie à l'agroécologie

    No full text
    This book traces the changes in concepts and in crop protection practices, based on the example of cotton cultivation, which often pioneers technical innovations. It includes a detailed analysis of the current phytosanitary situation, illustrates the limitations of agrochemical protection, and stresses the necessity of managing plant stands on an agroecosystem scale, introducing the concept of agroecology
    corecore