3,787 research outputs found

    Effects of the Charge-Dipole Interaction on the Coagulation of Fractal Aggregates

    Full text link
    A numerical model with broad applications to complex (dusty) plasmas is presented. The self-consistent N-body code allows simulation of the coagulation of fractal aggregates, including the charge-dipole interaction of the clusters due to the spatial arrangement of charge on the aggregate. It is shown that not only does a population of oppositely charged particles increase the coagulation rate, the inclusion of the charge-dipole interaction of the aggregates as well as the electric dipole potential of the dust ensemble decreases the gelation time by a factor of up to twenty. It is further shown that these interactions can also stimulate the onset of gelation, or "runaway growth," even in a population of particles charged to a monopotential where previously it was believed that like-charged grains would inhibit coagulation. Gelation is observed to occur due to the formation of high-mass aggregates with fractal dimensions greater than two which act as seeds for runaway growth.Comment: 9 page

    Structural Phases of Bounded Three-Dimensional Screened Coulomb Clusters (Finite Yukawa System)

    Full text link
    The formation of three-dimensional (3D) dust clusters within a complex plasma modeled as a spatially confined Yukawa system is simulated using the box_tree code. Similar to unscreened Coulomb clusters, the occurrence of concentric shells with characteristic occupation numbers was observed. Both the occupation numbers and radii were found to depend on the Debye length. Ground and low energy meta-stable states of the shielded 3D Coulomb clusters were determined for 4<N<20. The structure and energy of the clusters in different states was analyzed for various Debye lengths. Structural phase transitions, including inter-shell structural phase transitions and intra-shell structural phase transitions, were observed for varying Debye length and the critical value for transitions calculated

    Dusty plasma cavities: probe-induced and natural

    Full text link
    A comprehensive exploration of regional dust evacuation in complex plasma crystals is presented. Voids created in 3D crystals on the International Space Station have provided a rich foundation for experiments, but cavities in dust crystals formed in ground-based experiments have not received as much attention. Inside a modified GEC RF cell, a powered vertical probe was used to clear the central area of a dust crystal, producing a cavity with high cylindrical symmetry. Cavities generated by three mechanisms are examined. First, repulsion of micrometer-sized particles by a negatively charged probe is investigated. A model of this effect developed for a DC plasma is modified and applied to explain new experimental data in RF plasma. Second, the formation of natural cavities is surveyed; a radial ion drag proposed to occur due to a curved sheath is considered in conjunction with thermophoresis and a flattened confinement potential above the center of the electrode. Finally, cavity formation unexpectedly occurs upon increasing the probe potential above the plasma floating potential. The cavities produced by these methods appear similar, but each are shown to be facilitated by fundamentally different processes.Comment: 10 pages, 12 figure

    On the interpretation of results from small punch creep tests

    Get PDF
    The small punch creep testing method is highly complex and involves interactions between a number of non-linear processes. The deformed shapes that are produced from such tests are related to the punch and specimen dimensions and to the elastic, plastic, and creep behaviour of the test material, under contact and large deformation conditions, at elevated temperature. Owing to its complex nature, it is difficult to interpret the small punch test creep data in relation to the corresponding uniaxial creep behaviour of the material. One of the aims of this paper is to identify the important characteristics of the creep deformation resulting from ‘localized’ deformations and from the ‘overall’ deformation of the specimen. Following this, the results of approximate analytical and detailed finite element analyses of small punch tests are investigated. It is shown that the regions of the uniaxial creep test curves dominated by primary, secondary, and tertiary creep are not those that are immediately apparent from the displacement versus time records produced during a small punch test. On the basis of the interpretation of the finite element results presented, a method based on a reference stress approach is proposed for interpreting the results of small punch test experimental data. Future work planned for the interpretation of small punch tests data is briefly addressed
    • …
    corecore