A numerical model with broad applications to complex (dusty) plasmas is
presented. The self-consistent N-body code allows simulation of the coagulation
of fractal aggregates, including the charge-dipole interaction of the clusters
due to the spatial arrangement of charge on the aggregate. It is shown that not
only does a population of oppositely charged particles increase the coagulation
rate, the inclusion of the charge-dipole interaction of the aggregates as well
as the electric dipole potential of the dust ensemble decreases the gelation
time by a factor of up to twenty. It is further shown that these interactions
can also stimulate the onset of gelation, or "runaway growth," even in a
population of particles charged to a monopotential where previously it was
believed that like-charged grains would inhibit coagulation. Gelation is
observed to occur due to the formation of high-mass aggregates with fractal
dimensions greater than two which act as seeds for runaway growth.Comment: 9 page