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Abstract 
 
The small punch creep testing method is highly complex and involves interactions between a 
number of nonlinear processes. The deformed shapes which are produced from such tests are 
related to the punch and specimen dimensions and to the elastic, plastic and creep behaviour 
of the test material, under contact and large deformation conditions, at elevated temperature. 
Due to its complex nature, it is difficult to interpret the small punch test creep data in relation 
to the corresponding uniaxial creep behaviour of the material. One of the aims of this paper is 
to identify the important characteristics of the creep deformation resulting from “localised” 
deformations and from the “overall” deformation of the specimen. Following this, the results 
of approximate analytical and detailed finite element analyses of small punch tests are 
investigated. It is shown that the regions of the uniaxial creep test curves dominated by 
primary, secondary and tertiary creep, are not those which are immediately apparent from the 
displacement versus time records produced during a small punch test. On the basis of the 
interpretation of the finite element results presented, a method based on a reference stress 
approach is proposed for interpreting the results of small punch test experimental data. 
Future work planned for the interpretation of small punch tests data is briefly addressed. 
 
Keywords: Small punch test; Creep; Norton’s law; Kachanov damage model; 

Finite element analysis; Data interpretation 
 
NOTATION 
 
ap, Rs, to  Dimensions of small punch test specimen 
B, n  Constants in Norton’s creep law 
BM, HAZ, WM  Base material, heat-affected zone and weld metal, respectively 
D  Reference multiplier 
FE  Finite element 
KS  Correction factor for membrane stress 
M, f  Constants in the Kachanov damage model 
P, PL  Load and limit load 
SCF  Stress concentration factor 
SPT  Small punch test 
t, tf  Time and failure time 
a  Reference stress scaling factor or material constant in Kachanov 

 damage model 
b, h  Reference conversion parameters 
Δ  Displacement 

min,DD !!   Displacement rate and minimum displacement rate 
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ε, εc, eeng , 
c
eqe , em Strain, creep strain, engineering strain, equivalent creep strain and 

mean strain, respectively 
e! , c

mine! , )( refse!  Strain rate, minimum creep strain rate and strain rate at reference 
stress, respectively 

c Constant in the Kachanov damage model 
s, sm, sy Stress, meridional membrane stress and yield stress, respectively 
s1, seq Maximum principle stress and von-Mises equivalent stress 
snom, so Nominal stress and initial (nominal) stress 
refs , R

refs  Reference stress and rupture reference stress 
q  Cone angle 
w, w!     Damage variable and damage rate in Kachanov damage model  
 
 

1. INTRODUCTION 
 
Many components in conventional and nuclear power plant, chemical plant and aeroengines, 
for example, operate at temperatures high enough for such things as creep strains, creep 
damage, microstructure degradation, etc. to occur [1]. These phenomena may result in the 
premature failure of components [2]. Hence, non-destructive testing is often carried out as 
part of remaining plant life assessment processes [3]. For some components it is possible to 
extract small samples of material without significantly reducing the integrity of the structure 
from which the material is taken [3]. Also, in some regions, such as the heat-affected zones 
of welds [4], the amount of material which exists may be small. Similarly, when new alloys 
are being developed, it may only be viable to manufacture small quantities of the material. 
As a result, a number of attempts have been made to devise small specimen tests for 
determining engineering properties from small material samples [5]. Three specimen types 
have mainly been used for determining creep properties from small material samples. These 
are miniature tensile creep specimens [e.g. 3], impression creep specimens [6] and small 
punch test specimens [e.g. 7]; Figs. 1(a) to 1(c) show a typical conventional uniaxial creep 
test specimen and a typical set of uniaxial creep and creep rupture test data. Figs. 2(a) - 2(c) 
show the small specimens mentioned above. More recently an alternative small, creep test 
specimen, which enables a relatively large equivalent gauge length to be achieved, has been 
proposed [8]. The processing and interpretation of the results from miniature tensile creep 
specimens is the same as that used for conventional uniaxial creep tests [9]. Also, a 
mechanics-based procedure has been developed [6] for interpretation of the results from 
impression creep tests. In general, only the primary and secondary creep properties can be 
determined from impression creep tests; see Fig. 1(b) for typical uniaxial creep behaviour 
curves showing the primary, secondary and tertiary regions. The small punch creep specimen 
test procedure has also been used to estimate creep properties [7] related to the secondary and 
tertiary ranges of creep. However, although a code of practise for performing small punch 
tests has been produced [10] and is becoming generally accepted, there is still a need for a 
mechanics based   approach to explain how the failure time, stress and strain rate from 
uniaxial tests correspond to the small punch test specimen data. 
 
This paper contains the results of approximate analytical and detailed finite element (FE) 
analyses of small punch creep tests. It is shown that the regions of the test data dominated by 
primary, secondary and tertiary creep are not those which are immediately apparent from the 
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displacement versus time records produced during the small punch tests. On the basis of the 
interpretation of the FE results presented, a method is proposed for interpreting the results of 
experimental small punch creep tests.  
 

2. GENERAL DESCRIPTION OF SMALL PUNCH TEST SPECIMEN 
BEHAVIOUR 

 
2.1 "Problem Definition"  
 
A small punch test (SPT) setup is shown schematically in Fig. 3(a). A typical SPT specimen 
has the following dimensions: ap = 2mm, RS = 1.25mm and to = 0.5mm. The form of the 
displacement versus time output obtained from a small punch creep test is shown 
schematically in Fig. 3(b). The output (typically) includes an initially high, but rapidly 
decreasing, displacement rate which reduces to a minimum value, which persists for a 
relatively long time, before accelerating towards the end of the test, leading to fracture. Fig. 
3(b) is shown to indicate the relative durations and the extents of the deformations which 
occur at the various stages of a typical test. Typical test curves are shown in Fig. 3(c), where 
BM, HAZ and WM refer to the base material, the heat-affected zone and the weld metal of 
the weld, respectively. 
 
The small punch test is highly complex and involves the interactions between a number of 
nonlinear processes. These include: 
 
(i) Contact: the contact area between the specimen and the punch increases as the "constant 
load" creep test progresses (the friction conditions may also be important). 
 
(ii) Non-linear material: in general the elastic-plastic and the creep strains are non-linearly 
related to the stress state (the simplest constitutive equations that demonstrate this are the 
elastic-perfectly plastic model and the Norton creep equation [1], i.e. nc Bse =! ). 
 
(iii) Large deformation: the specimen starts as a flat plate and ends up being approximately 
conical in shape with a part-spherical shaped end, as indicated in Fig. 3(a). 
 
(iv) Large strains: for most engineering materials, which have been tested using the small 
punch test method [e.g. 11], the failure strains obtained from uniaxial tests are in excess of 
25% (see Fig. 1(b)) and for SPT specimens, there is often evidence of localised "necking" at 
or near the edge of contact between the specimen and the punch [12], at which position the 
strains are significantly greater than the general strain level in the specimen as a whole. 
 
Taking into account the highly non-linear behaviours experienced during a test, it is hardly 
surprising that the interpretation of the results is difficult. 
 
2.2 Approximate Theoretical Models 
 
The most comprehensive theoretical study which is relevant to the SPT setup is that of 
Chakrabarty [13]. However, there are a number of restrictions which limit its direct 
applicability to the SPT specimen behaviour. These include (i) the requirement that the 
specimen thickness is small compared to the punch radius and (ii) the analysis is strictly only 
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applicable to a specific material behaviour model (rigid plastic) which is assumed in the 
analysis. Notwithstanding these, and other limitations, the analysis provides some very useful 
insights into the likely creep behaviour of a SPT specimen. In particular, Yang and Wang 
[12] have used the Chakrabarty model to derive equations relating (i) the equivalent strain, 
eqe , at the edge of contact between the specimen and the sphere to the overall displacement, 
Δ, and (ii) the membrane stress, ms , for an applied force, P, to the displacement. For a 
specimen with ap = 2mm, RS = 1.25mm and to = 0.5mm, the relationships are: 
 

 32 00440093570179590 D+D+D=e ...eq  (1) 

 

 32 176880056380724761 D-D-D=
s

...P
m

 (2) 

 
Yang and Wang also derived an equation relating the equivalent strain at the disc centre to 
the deflection [12]. There is a maximum value for 

m

P
s  [10,13] and this has been related to 

ap, RS and t0 [10], i.e.  
 

 0
2.1

S
2.0

pS
m

tRaK33.3P -=÷÷
ø

ö
çç
è

æ
s

 (3) 

 
where Ks is a non-dimensional correction factor, determined empirically for the particular 
material. The KS factor is used to take into account the localised “necking” effect of the 
specimen during the “coning” deformation process which is believed to be material 
dependant [10]. 
 
2.3. Estimate of "General" Strain Levels and Membrane Stresses in a SPT Specimen 
 
Experimental observations show that high strain levels and near failure necking occur in the 
specimen at a position close to the edge of the contact with the sphere [14]. The severe strain 
variations can make it difficult to interpret the overall behaviour of the specimen. In this 
section, an approximate analysis is carried out which allows the "general" strain levels to be 
estimated. 
 
In order to estimate the "general" strain levels, it is assumed that as deformation occurs, at a 
given time, the specimen thickness reduces, but remains the same for all positions within the 
specimen, as indicated in Fig. 4. It is also assumed that the thickness, t, is small compared 
with RS, ap and Δ. 
 
The surface area of the cone with centre line OO’ and cone surface ED is given by: 
 

 LaA pcone,s p=  (4) 

 
where the differences in area between the assumed conical (FD) and actual spherical (FC) 
end of the specimen is neglected. 
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Also, 
h
a

tan p=q  (5) 

 
Assuming constant volume during deformation gives: 
 

 0
222 tataha ppp p=+p  (6) 
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The "general" strain level  
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Similarly, an expression for the displacement, Δ, in terms of cone angle, θ, can be obtained,  
 
i.e. SRD'OFD +-»D  (11) 
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æ -
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The variation of 

0t
t  with θ (Equ. (7), 

0t
t  with 

pa
D  (Equs. (7) and (12)), 

pa
D  with θ (Equ 

(12), me  with θ (Equ (10) and me  with 
pa

D  (Equs. (10) and (12)) are given in Figs. 5 - 9.  

 
The meridional, membrane stress, σm, at a position defined by radius r (see Fig. 4) is given by 
: 
 

 
qp

=s
cosrt
P

m 2
 (13) 

 
Using Equ. (7) gives: 
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Taking the maximum membrane stress, mŝ , to be that at the edge of contact between the 
specimen and the sphere, where q= cosRr S  (position BB’ in Fig. 4), as indicated by 
experimental observation [e.g. 10], then: 
 

 
q
q

+

p
=s 2

2
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11
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(15) 

 
The predicted variation of 

02 tR
P
S

m

p

s  with θ and 

02 tR
P
S

m

p

s with 
pa

D  are given in Figs. 

10 and 11, respectively. 
 
 
Equations (1), (2 and (3) are applicable to a specific position in the specimen, whereas 
equations (4) to (15) provide a measure of stress and strain which characterises the "general" 
states of stress and strain within the specimen. This is based on a very much simpler analysis 
to obtain the relationships between the "general" states of stress, strain and deformation 
which exist in the specimen; a clear statement of the assumptions made in the derivation of 
the “simpler” equations is provided. The assumption which causes the most significant 
difference between the derivations by Chakrabarty and that in the simplified analysis is that 
in the present derivation the specimen thickness is allowed to vary with deformation but it is 
assumed to be the same at every position within the conical and spherical zones, at any 
particular time. 
 
The predicted variations of P/sm and εm with normalised displacement, D/ap, are given in Fig. 
12(a) and 12(b); εm is the meridional strain in the conical section at the edge of contact 
between the specimen and the punch and σm is the corresponding meridional membrane 
stress. It can be seen that the predictions for the membrane stress are in reasonably good 
agreement (Fig. 12(b)). However, although the predictions of membrane strain have similar 
trends (Fig. 12(a)) there is a factor of about 2 times difference for D/ap ³ 0.3. This is 
explicable by the fact that the present model assumes the thickness to be constant (at any 
given instant), whereas Chakrabarty’s model [13] allows the thickness to vary. Hence the 
Chakrabarty model would be expected to result in higher strains at the "edge of contact" than 
the present model. Both models consider membrane behaviour only. Hence, neither model is 
applicable for low D/ap values (i.e. D/ap < 0.3). An important observation is that in a typical 
test [e.g. 15] the constant displacement rate region of the curve does not occur until D/ap ³ 
0.5, by which time the general strain levels in the specimen (as indicated by the model 
described in this section) are between 10 and 15% and the peak strains (as indicated by the 
Chakrabarty model) are about 30%, see Fig. 12(a). These strain levels are way beyond the 
strain levels normally associated with primary and secondary creep and, usually these would 
only be expected to occur well into the tertiary region, close to failure. Of the four types of 



7 
	

"non-linear" behaviour described in section 2.1, the relationship between contact area (a 
function of q, see Fig. 4) and displacement, Δ, is not likely to be greatly affected by the 
precise details of the material behaviour model; this is implied by Equ. (12). Also, the strain 
distribution (expected near to failure) is not strongly affected by the precise material 
behaviour for a given displacement, Δ, as Equs. (1) and (10) indicate. However, the material 
behaviour model will have a direct effect on the displacement, Δ, versus time for a given 
load, and on the displacement rate, D! , versus load, for a given deformation value. Hence, the 
material behaviour model and the failure criterion seem to be the most important parameters 
which affect the behaviour observed in a small punch test. 

 

2.4. Two Simple Material Behaviour Models 

Relatively simple material behaviour models, e.g. a Norton secondary creep law [1] and a 
Kachanov damage mechanics model [e.g. 16], are capable of describing tertiary creep leading 
to ductile failure in the case of a Norton behaviour model (see section 2.4.1) and tertiary 
creep leading to brittle failure in the case of a damage mechanics model (see section 2.4.2); 
these two cases are typical of the main types of creep behaviour models currently used to 
predict the creep behaviour of components [e.g. 4].  

 
2.4.1. Ductile Failure of a Uniaxial Specimen Obeying a Norton Creep Law  
 
In the case of creep ductile failure, a large deformation analysis is required. Norton’s creep 
law relates the uniaxial strain rate to the stress via the equation: 
 

 nBs=e!  (16) 

 
For a specimen with an initial cross-section area of A0, and initial gauge length of L0, 
subjected to a constant load P, the gauge length will increase (instantaneous value L) and the 
cross section area will decrease (instantaneous value A). Assuming creep occurs under 
constant volume conditions, then: 
 

 00ALLA=  (17) 

 

Hence 0=+
dt
dAL

dt
dLA  (18) 

 
The instantaneous stress, σ, is given by: 
 

 
A
P

=s  (19) 

 
From Equ. (18) it follows that: 
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A
dt

dA

L
dt

dL
-=  

(20) 

     

Hence 
dt
dA

A
1

-=e!  (21) 

 
Substituting Equ. (19) into (16) and using (21) gives: 
 

 
dt
dA

AA
PB n

n 1
-=  (22) 

 
For a ductile material, failure occurs as 0®A . Therefore, the failure time, tf, is obtained 
from Equ. (22) as: 
 

 ò-=ò -
0

1
0

0A

ntn dAAdtBP f  (23) 

 

and since 
0

0 A
P

=s , then: 

 

 nf nB
t

0

1
s

=  (24) 

 
For intermediate times, integration of Equ. (23) between 0 to t and A0 to A gives: 
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eng t

t  (25) 

 
Typical ductile creep curves, for different n-values, are shown in Fig. 13. 
 
Creep rupture is often presented as ( )0slog  versus ( )ftlog ; Equ. (25) implies that this would 
have a gradient of -1/n (see Fig. 14). 
 

Figs. 13 and 14 show, schematically, the creep strain and creep rupture behaviours predicted 
by these equations. 
 
2.4.2.  Brittle Failure of a Uniaxial Specimen Obeying a Norton Creep Law and 
           Kachanov Damage Model 
 
In the case of creep brittle failure, the simplest damage mechanics model is that of Kachanov 
[16]. The Kachanov, single damage parameter creep law relates strain rate and damage rate 
to the stress via the equations: 
 

 
n

c
1

B ÷
ø
ö

ç
è
æ
-

=
w

se!  (26) 
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where ( )f
c

w-
s

=w
1

M!  (27) 

 
The damage parameter, ω, varies for 0 (initially) to 1 (at fracture). Hence, from Equ. (27): 
 

 ( ) òò =- ft

0

1

0
dtMd1 cf sww  (28) 

 

Therefore, ( ) csf 1M
1tf
+

=  (29) 

 
At intermediate times, t, when the damage is 10 <w< : 
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Substituting Equ. (30) into Equ. (26) and integrating leads to: 
 

 ( ) ï
þ

ï
ý

ü

ï
î

ï
í

ì
-

ú
ú
û

ù

ê
ê
ë

é
-

-f-
s

=e
+f
-+f

c-

11
1

1
1 n

f

n
c

t
t

nB
A  (31) 

 
A typical brittle creep curve is shown in Fig. 15. 
 
Equ. (29) implies that a plot of ( )0slog  versus ( )ftlog  would have a gradient of -1/c, as 
indicated in Fig. 16.  
 
Figs. 15 and 16 show, schematically, the creep strain and creep rupture behaviours predicted 
by these equations. 
 
2.5. A Qualitative Explanation for the Shape of a SPT Creep Curve 
 
A schematic diagram (approximately to scale), showing the variation of displacement with 
time, from a small punch creep test, is shown in Fig. 3(b). 
 
According to Eqn. (1) the strain levels related to position 1 (see Fig. 3(b)) would typically be 
about 25% and the "general" strain level would be more than 10% (Fig. 12(a)), according to 
Eqn. (10). By comparison with typical uniaxial data for P91 (Fig. 1(b)) it can be seen that the 
beginning of tertiary creep occurs at strains of about 1 to 3%. Hence, it is likely that primary 
and secondary creep are over well before the time associated with position 1 (Fig. 3(b)) is 
reached. 
 
By the time that position 2 (Fig. 3(b)) is reached, the strains at the edge of contact are 
estimated to be greater than 30% (Eqn. (1) and Fig. 12(a)) and the general strains are about 
15% (Eqn. (10 and Fig. 12(a)). By comparison with typical uniaxial data (Fig. 1(b)) it can be 
seen that the strains at position 2 would be well into the tertiary creep region (tertiary creep 
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seems to start at about 3 to 4% strain). From these comparisons of uniaxial and small punch 
creep test data, the question arises "What is happening during the minimum deflection rate 
portion (positions 1 to 2) of the SPT curves if it is not associated with secondary creep?" 
 
A tentative, qualitative explanation of the behaviour (quantitative confirmation is given in 
Section 3) is that the early part of the region between 0 and 1 (indicated in Fig. 3(b)) is 
predominantly primary and secondary creep. However, the deformation rate continues to 
decrease, even though the tertiary creep region is being entered; this is due to the "stiffening 
effect" caused by the deformation entering the “membrane loading” phase, compared with the 
relatively "flexible situation" associated with the plate bending effect which occurs at an 
earlier stage. The minimum deformation rate portion (positions 1 to 2 in Fig. 3(b)) is a 
balance between the increasing deformation rate that would result from the combined effect 
of the tertiary creep behaviour and specimen thinning (large deformation) effects and 
opposing these effects, the reducing deformation rate that would result from the increased 
stiffening which occurs as a result of the cone angle, q (Fig. 4), becoming smaller for higher 
deformations. The region between 2 and 3, in Fig. 3(b), is the acceleration in deformation rate 
associated with the final necking and/or the high damage accumulated in the local regions for 
the material. Section 3 contains the results of detailed FE analyses which are used to attempt 
to verify the above explanation.  

 

3. FINITE ELEMENT MODELLING 
 
Section 2.4.1 shows how the inclusion of large deformation and large strains can result in a 
tertiary - like creep behaviour leading to a clearly defined rupture time, even for a material 
obeying a simple Norton creep law. Section 2.4.2 shows how the further direct inclusion of a 
tertiary creep component (using a pair of coupled strain rate/damage equations) in the creep 
law can lead to similar strain versus time behaviour (see Figs. 13 and 15) but a different 
dependence of rupture time on applied stress (see Figs. 14 and 16); for the Norton law, 

n
ft

-µs , and for the damage model, cs -µft , both of which produce straight lines when 
( )ftlog  is plotted against ( )slog . It can be seen that the ductile model results in the same 

gradient (equal to n), for ( )e!log  versus ( )slog  at all strain levels, see Fig. 17, whereas the 
gradient varies when a damage model is used, but at each strain level a straight line fits, 
reasonably well, the ( )e!log  versus ( )slog  data, see Figs. 18 and 19. Ductile and damage 
mechanics material behaviour models have been used in FE analyses, with large 
deformations, to investigate whether the behaviour observed in small punch creep test 
components can be explained using the two types of material models. 
 
3.1 Finite Element Analysis Details 
 
The geometry chosen for the FE analyses is ap = 2mm, RS = 1.25mm and to = 0.5mm; the 
mesh and boundary conditions are shown in Fig. 20. The specimen mesh consists of eight 
noded, isoparametric, axisymmetric elements [17]. The indenter sphere and support are 
represented by rigid shell elements [17]. 
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All of the analyses were performed under elastic - creep conditions. The creep behaviour was 
represented by a Norton`s law [1] and a single parameter damage model [16] as expressed by 
Equation (16) and equations (26) and (27), respectively. 
 
3.2 Elastic-Creep Behaviour 
 
3.2.1 Norton creep model 
 
Typical predictions of displacement versus time are shown in Fig. 21, from which it can be 
seen that although the material behaviour model describes secondary creep only, the 
displacement versus time results contain an initial reducing displacement rate portion, an 
almost constant displacement rate, which lasts for the majority of the time, followed by an 
accelerating region leading to failure. The effect is similar to that described in section 2.4.1 
for a simple uniaxial specimen undergoing large deformation. 
 
The variations of me  with Δ at the apex (inside, i, middle, m, and outside, o), position A in 
Fig. 3(a), at the edge of contact (i, m and o), position B in Fig. 3(a) and in the cone section (i, 
m and o), position C in Fig. 3(a), are shown in Figs. 22(a), 22(b) and 22(c) for n = 6. Also 
shown in Fig. 22 are the predictions based on Chakrabarty`s model. It can be seen that the 
general trends for the results based on Chakrabarty`s model are in good agreement with the 
FE predictions, especially for 30.³D mm. Similarly, the agreement between P/sm versus Δ 
obtained from the FE analysis and from both the Chakrabarty model and present model (see 
section 2.3), is good for 30.³D mm, as indicated in Fig. 23. Also, although the peaks occur at 
different displacement values, the peak value of P/sm » 1.82, obtained from the FE analyses, 
is in good agreement with the published peak value of 1.89 [15]. Similar results to those 
shown in Figs. 22 and 23 were obtained for other n-values; the results are given in Figs. 24 
and 25. 
 
For each n-value, calculations were performed with different load levels. From these FE 
analyses the plots of log ( minD! ) versus log (P) and log (P) versus log (tf), shown in Figs. 26 
and 27, respectively, were produced. An important observation from Fig. 26 is that all the log 
( minD! ) versus log (P) plots have gradients equal to their respective n-values. Also, the 
gradients in Fig. 27 are equal to -1/n for all three n-values. Plots of D/ap versus t/tf (Fig. 21) 
are similar in appearance to those shown in Fig. 13, showing the effect of the n-value on the ε 
versus t/tf plots. Comparison of the results shown in Figs. 22(b), 24(a) and 25(a) and those 
shown in Figs. 23, 24(b) and 25(b) confirm that the εm versus Δ and P/sm versus Δ plots are 
not greatly sensitive to the exponent, n, in the Norton equation (Equ. (16)). Hence, the large 
deformation, large strain behaviour of a uniaxial specimen, with a Norton creep law, as 
indicated by Equs. (24) and (25) is mirrored in the much more complex large deformation, 
large strain behaviour which occurs in the SPT specimen. 
 
From the FE results, displacement rates, D! , were determined for a series of Δ-values; plots 
of log (D! ) versus log (P) at each value of Δ (Fig. 28) were similar in appearance to those for 
log ( minD! ) versus log (P), shown in Fig. 26. The gradients of these plots are shown plotted 
against Δ in Fig. 29. It can be seen that as is the case for minD! , the gradient at each value of Δ 
is close to the n-value used in the calculations. 
 
3.2.2 Single damage - parameter creep model 
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Real materials do not obey Norton`s law from initial loading right up to final fracture. A 
more realistic model is the Kachanov single damage - parameter model (Equs. (26) and (27), 
[16].  
 
Elastic-creep analyses were performed for a damage model with 2010091 -´= .B , 4628.n = , 

7896.=c , 171053673 -´= .M  and 34577.=f . The Δ versus t prediction obtained using the 
Kachanov model is shown in Fig. 30. Also, shown in Fig. 30 is the corresponding data 
obtained for a Norton material model with the same n-value, from which it can be seen that 
the predictions (when compared on the bases of t/tf) are in reasonably good agreement.  
 
The εm versus D/ap and P/sm versus D/ap obtained with the Kachanov model are compared 
with those for the Norton behaviour in Figs. 31 and 32, respectively. There is a remarkable 
level of agreement obtained between the two sets of results for the Kachanov and Norton 
models. 
 
The rupture data obtained from the damage calculations are shown in Fig. 33 plotted as log 
(P) versus log (tf). The gradient of the fit to this data is - 1/5.57; unlike those for the Norton 
model this value does not correspond to either the n-value or the χ-value used in the damage 
model. The gradients of ( )D!log  versus ( )Plog , at various Δ-values, shown in  Fig. 34 are not 
constant, varying from approximately "n" for the lower deflections to approximately "χ" for 
the higher deflections; the gradients, plotted against  displacement, in Fig. 35, clearly show 
this behaviour. 
 
 

4. APPLICATION OF THE REFERENCE STRESS METHOD 
 
4.1 Basis of the Reference Stress Method 
 
The reference stress method was developed to allow the creep deformation of a component at 
a particular load level to be related to the strains obtained from a single uniaxial creep test 
[e.g., 1, 18]. For some components it is possible to obtain an analytical solution which relates 
the displacement rate (at a point of interest in the component) to the load, material properties 
and geometry, e.g., for a component made from a Norton material,  
 

 ( )ensionsdim,n,B,Pf=D!  (32) 

 
Inspection of analytical solutions show that they are of the form: 
 

 ( ) ( ) ( )nnomBensionsdimfnf s=D 21
!  (33) 

 
The basis of the reference stress method is that a constant, α, can be chosen such that 
( )

n
nf
a

1  is practically independent of n. Hence, Equ. (33) can be written as: 

 
 ( ) ( )ref

n
nom DDB se=as=D !!  (34) 
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The quantity nomas  is the so-called reference stress, refs , and hence ( ) ( )nref
n

nom BB s=as  is 
the creep strain rate produced in a uniaxial specimen subjected to a stress of refs . The 

quantity D is a constant ( ) ( )( )n21 /dimfnf a=  which has the units of "length" if D!  is a 
displacement rate. If an analytical solution does not exist for the particular component of 
interest, a series of FE solutions with different n-values can be used to determine the 
reference stress, refs , and references multiplier, D [e.g., 6]. Alternatively, approximate 
reference stresses and multipliers can be obtained from limit load and linear elastic solutions 
for the component [e.g. 1], i.e.,  
 

 y
L

ref P
P
s»s  (35) 

 

and 
÷
ø
ö

ç
è
æs

D
»

E

D
ref

e

 (36) 

 
For creep ductile materials the rupture reference stress, R

ref
s , which relates the failure time of 

a component to a uniaxial stress, is directly related to the deformation reference stress, given 
by nomas , in Equ. (34), or approximately Psy/PL in Equ. (35). Ductile creep behaviour has 
been defined [19] as creep in which final elongation, εf, is greater than five times the product 
of the minimum creep strain rate and the time to rupture, see Fig. 1. The rupture reference 
stress for a ductile material is given by [19]: 
 

 ( )( ) ref
R
ref 1SCF13.01 s-+=s  (37) 

 
For materials which do not satisfy the ductility requirement, the rupture reference stress is 
given by [19]: 
 

 ( ) ref
R
ref 1SCF

n
11 s÷

ø
ö

ç
è
æ -+=s  (38) 

 
In Equs. (37) and (38), SCF, is the "stress concentration factor", for adjustment of the 
reference stress, which is given by: 
 

 
ref

max,ESCF
s

s
=  (39) 

 
where max,Es  is the maximum elastically calculated value of the equivalent value of stress in 
the structure or feature for the same set of loadings that were used to calculate refs  [19]. This 
evaluation is considered to be acceptable [19] for 0.4SCF £ ; if SCF > 4.0 it should be treated 
as a crack. For the SPT it is difficult to define an appropriate SCF - value; suggestions for the 
choice of an appropriate value for SCF are given in the Discussion section. 
 
4.2 Inferring Uniaxial Behaviour from Small Punch Specimen Tests 
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Rather than being used to predict the deformation rate for a component, D! , related to the 
creep strain rate, ( )refse! , from a uniaxial creep test, Equ. (34) can be re-written as: 
 

 ( )
Dref
D

=se
!

!  (40) 

 
Equ. (40) infers that the uniaxial creep strain rate at a stress level equal to refs  can be 
obtained by measuring (experimentally) the displacement rate of the component (a small 
punch test specimen in the present case) and dividing it by the reference multiplier, D, which 
is in effect the equivalent gauge length of a uniaxial specimen. Hence, the use of small 
specimen tests to predict corresponding uniaxial creep data requires the reference stress,  

( )nomref as=s , and reference multiplier, D, to be determined. Essentially, this requires the 
determination of the appropriate α-value. This approach has been used to interpret the data 
obtained from impression creep tests [6]. There is an additional complication which arises   
when using this technique to interpret the data from SPTs. Because the geometry changes 
progressively during the tests, the reference stress and reference multiplier will also change 
during the test as a result of this. 
 
4.3 Reference Stress, σref, and Multiplier, D, Related to the Minimum Displacement 

Rate, minD! , in a SPT 
 
The minimum displacement rates, minD! , for a particular material occurs at about the same 
value of Δ, irrespective of load level. FE solutions have been obtained for various n-values. 

By plotting ( ) ÷ø
ö

ç
è
æ

as
D

n
nom

min
Blog

!
 versus n for various values of α, the value of α which 

produces a horizontal line (see Fig. 36) enables the α-value related to the reference stress to 
be identified, while the intercept on the vertical axis, which is log (D), allows the reference 
multiplier to be determined. The noms  value can be arbitrarily chosen; in the present case, for 
convenience, it is taken to be: 
 

 
op

nom ta2
P

p
s =  (41) 

 
From Fig. 36, it can be seen that the required h (the specific value of a at the reference 
stress) value is 3.08 and D = 2.82. Normalising D with respect to ap, such that paD b= , gives 
β = 1.41. 
 
4.4 Variation of h and β with Δ/ap 
 
Applying the same technique as that described in Section 4.3 to other values of Δ allows the 
variation of h and β with Δ/ap to be obtained, see Figs. 37 and 38. The justification for 
choosing constant Δ values as the basis for determining the reference parameters is that, to a 
first order of approximation, the overall shape of the SPT specimen is characterised by the 
displacement, Δ, of the apex. 
 
From the variations of h and β with Δ which are shown in Fig. 38, it can be seen that: 
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(i) the β-value reduces continuously with increasing displacement, i.e., the effective gauge 
length reduces with increasing displacement; 
 
(ii) there is a minimum value of h which occurs when D!  is a minimum, i.e. hmin = 3.08. 
Rearranging Equ. (41) and using nomref hss =  gives: 
 

 
h

p
s

op

ref

ta2P
=  (42) 

 
Taking ap = 2mm and to = 0.5mm gives P/sref = 6.28/h; using the variation of h with 
Δ/ap (Fig. 38), the variation of P/sref with Δ/ap is obtained (see Fig. 39). The maximum value 
of P/sref, which occur at Δ/ap » 0.7 is 2.04 mm2. This is close to the maximum P/sref (= 1.89 
mm2) and Δ/ap value (0.8) predicted on the basis of the Chakrabarty membrane model (Equ. 
(2)).  
 
It should be noted that although the reference parameters (h and β) were obtained using a 
Norton creep model, the results are not restricted to there having to be used in the secondary 
creep behaviour region governed by Norton`s law. The material behaviour model is simply a 
convenient vehicle for obtaining the reference parameters [1,18]. 
 
 

5. DISCUSSION 
 
In order to relate the Δ versus t and tf versus P data obtained from SPTs to the corresponding 
data from uniaxial creep tests, i.e., εc versus t and tf versus σ, it is necessary to define a stress 
corresponding to a SPT as a function of P, ap, Rs and t0, which is equivalent to a uniaxial 
creep test, and to determine a method for converting the creep displacement, Δc, from a SPT 
to an equivalent uniaxial creep strain, εc, obtained from the corresponding equivalent uniaxial 
creep test. 
 
5.1 The Equivalent Uniaxial Stress 
 
Attempts have been made to determine an appropriate stress to relate the minimum 
displacement rate, minD! , and failure time, tf, obtained from small punch tests, to the 
corresponding uniaxial data (e.g.[15]). Equ. (3) seems to be the most widely accepted for 
relating ms  to P, pa , 0t  and sR , which leads to: 
 

 
0

2120333 tRaK.
P

.
S

.
pS

m -=s  (43) 

 
Using the dimensions mmap 2= , mm.RS 251=  and mm.t 500 =  results in the relationship: 
 

 P
K
.
S

m
5280

=s  (44) 
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The correction factor, KS, which is a material dependent parameter, is usually found to be in 
the range 1 to 1.3. 
 
The deformation reference stress, obtained for mm.RS 251= , defined by Equ. (42), results in:  
 

 
0p

ref ta2
P

p
hs =  (45) 

 
Using the dimensions mmap 2=  and mm.t 500 =  results in the relationship: 
 

 
28.6
P

ref
hs =  (46) 

 
The variation of h with Δ (Fig. 38) has been used to obtain the variations of sref/P with t, 
shown in Fig. 40, from which it can be seen that for the vast majority of the test period, sref/P 
is approximately 0.512 (unit = length-2). If KS is taken to be 1.0 in Equ. (44), then 

P.m 5280»s , which is very close to the value of 0.512P (obtained for refs ), over the vast 
majority of the period. It should be noted that the reference stress method results in a sref/P 
value which is the same as the value which has been proposed to be used to relate the SPT 
creep behaviour to the corresponding uniaxial test stress. The reference stress approach 
described in this paper therefore supports the stress proposed [10] for use in interpreting SPT 
data. 
 
The detailed FE analyses carried out using a large deformation, "ductile", Norton material 
model and a "damage mechanics" material model show that the variation of P/sm  with Δ for 
both models are practically the same (see Figs. 32(a) and (b)). These P/sm versus Δ 
variations are also very similar to the approximate, analytical solutions based on 
Chakrabarty’s model and that derived in section 2.3 (see Figs. 23, 24(b), 25(b) and 39). 
These results also support the stress proposed [10] for use in interpreting SPT deformation 
versus time data. 
 

The choice of the appropriate rupture reference stress, R
refs , defined by Equs. (37) and (38), 

depends on whether the material is taken to be ductile or brittle. If the material is ductile the 

conversion ratio, 
ref

R
ref
s

s , is a function of the stress concentration factor, SCF, i.e. 

 

 ( )( )11301 -+=s
s SCF.

ref

R
ref  (47) 

 
If the material is brittle, the conversion ratio also requires an estimate of the stress index, n, 
i.e., the conversion ratio is given by: 
 

 ( )( )111 -+=s
s SCFnref

R
ref  (48) 
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It is usually possible to estimate the n-value, but for a SPT specimen, the choice of an 
appropriate SCF is not easy. If KS (Equ. (44)) is taken to be 1.0, the value of SCF, in Equs. 
(37) and (38) can be estimated from Equs. (44) and (37) or Equs. (44) and (38), for ductile 
and brittle materials, respectively. For both ductile and brittle materials, the SCF is predicted 
to be 1.0. This is consistent with the fact that the membrane stress at positions B and C (Fig. 
4) are the same (see Fig. 23, for example) and do not vary across the wall thickness to any 
significant extent; indicating that the stress concentration factor is approximately 1.0, i.e. 

ref
R
ref ss » . 

 
The multiaxial stress version of the damage equation (Equ. (27)) is: 
 

 ( )f
c

w-
s

=w
1

rM
!  (49) 

 

where ( ) eq1r 1 saass -+=  (50) 

 
and α is the multiaxiality material dependent constant. It should be noted that other 
alternative definitions for rs  could be used but the overall effect would be similar. 
 
Throughout the conical section and hemispherical end section of the SPT specimen, the 
stress field is essentially biaxial. The value of σeq can range from 0.866σ1 to σ1 for 120 s<s<  
(with 03 =s ) and this will vary from position to position. Hence, when incorporated with α 
in Equ. (50) and used in Equ. (49) to obtain the damage rate, the creep deformation rate and 
failure time will be influenced by the multiaxial creep damage behaviour of the material. 
This phenomenon has been observed in experimental tests and the need for the inclusion of 
the KS parameter in Equ. (3) may, in part, be a reflection of this multiaxiality effect on 
damage rates. Further work on this aspect is currently in progress. 
 
5.2 Converting SPT Displacements to Corresponding Uniaxial Creep Strains 
The most commonly used creep constitutive equation is the Norton equation, i.e., 
 

 nc
min Bse =!  (51) 

 
which relates the minimum strain rate (in the secondary creep region, see Fig 41) to the 
applied stress. Equ. (51) implies that a straight line, with gradient “n”, would be obtained if 

( )c
minlog e!  is plotted against ( )slog , see Fig 42. 

 
For the ductile model described in section 2.4.1, the strain is related to time via Equ. (25), 
from which it can be shown that the variation of strain rate with strain is given by:- 
 

 ( ) nn B'1 see +=!  (52) 

 
This equation implies that for a plot of ( )e!log  versus ( )slog  at any specific strain value, ε’ 
say, the gradient would be n, i.e. the same gradient as that associated with the minimum 
strain rates. However, the B-value (see Equ. (51)) in Equ. (52) is replaced by ( ) B1'B ne+= . 
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Fig. 17 shows some typical results for a “ductile”, Norton equation, for which B = 1.88e-29 
and n = 10.147.  
 
If the gradients at a series of fixed strain levels (e.g. ε’ in Fig. 41) are plotted against σ (log-
log scales), approximately straight line fits are obtained for materials obeying a number of 
other creep constitutive equations; see Figs. 18(a) and 18(b) for the Murakami and Liu 
damage model with constants applicable to 316 stainless steel at 600ºC and P91 at 650ºC. 
Similar results for a Kachanov damage equation are shown in Figs. 19(a) and 19(b) from 
which it can be seen that approximately straight line fits are obtained again at each strain 
level. However, it can be seen that, unlike the “ductile” Norton model (Fig. 17), the gradients 
are not all the same and equal to that for the minimum strain rate. 
 
Typical experimental SPT data [11] is shown in Fig. 3(c), from which it can be seen that the 
minimum displacement rate occurs when the punch displacement is about 1.5mm or more. 
The FE results presented in Figs. 21 and 30 for two material behaviour models also indicate 
that the minimum displacement rate occurs when the punch displacement is about 1.5mm. 
When the punch displacement is about 1.5 mm, the general and peak strain levels in a SPT 
are more than 15% and 30%, respectively; this can be seen from Figs. 12(a), 22, 24(a) and 
25(a). When compared with the strain levels which exist when the minimum strain rate 
occurs in a uniaxial creep test, i.e. 1% to 3%, as indicated in Fig. 1(b), the strain levels in a 
SPT test, at the minimum deflection rate position, are extremely high. Nevertheless, when the 
minimum displacement rate is plotted against the load using log - log scales, reasonably good 
straight line fits occur (see Figs. 26, 28 and 34), as is the case for the log ( mine! ) versus log (σ)  
plots obtained from uniaxial creep test data (see Fig. 42, for example). Also, the gradients 
obtained at given strain levels, within the tertiary range, for a large deformation, Norton 
creep model, are equal to the respective stress exponents; this is the case for the displacement 
rates in small punch tests at fixed displacement levels as well, see Fig. 29. The gradients 
obtained from the results obtained with the FE analyses using the damage material model did 
not correspond to the n-value, except at the lower displacements (see Fig. 35); in general the 
gradients were between the n and χ values. 
 
The fact that the )(log D!  versus )P(log  plots are straight lines even though the strain levels 
are too high for secondary creep to be occurring is because for a given strain level, in the 
tertiary range, the )(log e!  versus )(log s  plots produce approximately straight line 
relationships for many materials. Plots of )(log e!  versus log(σ) for a range of constant strain 
values, in the tertiary range, are given in Figs. 17, 18 and 19 for three material behaviour 
models, i.e. Norton (large deformation), Kachanov and Lui and Murakami [20].  
 
Attempts are usually made to relate the displacement rate in a SPT, in particular the 
"minimum displacement rate", to the secondary creep region in a uniaxial creep test. 
However, it is clear from the detailed FE analyses and the Chakrabarty [13] and simple 
(section 2.3) models that the strain levels in the region of the minimum displacement rate are 
far too high to be related to secondary creep behaviour. However, as indicated in this section, 
for some practical materials the )(log e!  versus )(log s  data, at fixed strain levels in the 
tertiary range, produce plots with gradients which are approximately equal to those which are 
obtained using the minimum strain rates. For other materials, the n-values obtained do not 
necessarily correlate with those of the minimum rates in uniaxial creep data; the same is true 
of the gradients obtained from SPT data. This can be explained by the fact that the β-value 
continuously decreases (see Fig. 38) as the test proceeds, and hence β decreases as Δ 
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increases. Therefore, Equ. (40) indicates that ( )
p

ref ab
Dse !! =  produces an increasing ( )refse!  

because  β decreases. Therefore, even for a region in which D!  is practically constant, the 
predicted ( )refse!  increases, indicating that tertiary creep is occurring. This is a mathematical 
form of the argument which follows from the fact that the general and peak strain levels, 
when the minimum deformation rate is achieved, are far too high for the material to be still in 
the secondary region. However, integration of the experimental Δ versus time data, using 
Equ. (40) with the instantaneous values of refs  (=hsnom) and D (= βap) should allow the ce  
versus time data, corresponding to uniaxial data, to be obtained, for the refs  history 

(increasing with the increase of h, in the constant D!  region, Fig. 38) experienced by the SPT 
material. Further work is being carried out on this aspect of the SPT data interpretation 
project.  
 

6. CONCLUSION 
 
(a)  Reference parameters, h  and b , which relate the test conditions (load and specimen 
dimensions) and test results (deformation versus time and failure time) to corresponding 
uniaxial stress, uniaxial creep strain versus time and uniaxial rupture time, have been 
established for a typical geometry (ap = 2.0mm, RS = 1.25mm and t0 = 0.5mm). The 
variations of h  and b  with D  are given in Fig. 38. 
 
(b) For the majority of an SP test duration, see Fig. 40, the reference stress is related to 
the applied load, P, via the relationship P512.0ref =s ; where P has units of N and refs  has 
units of MPa. This is an appropriate stress to relate the SPT load and geometry to a 
corresponding stress for uniaxial creep and creep rupture data if the material is creep ductile. 
This is similar to the value recommended in the proposed code of practice [10]. For creep 
brittle materials the conversion factor (0.512) may need to be modified.  
 
(c) The minimum displacement rate in a SPT relates to the strain rate at some position 
within the tertiary creep region, i.e. not directly to the minimum strain rate in a uniaxial creep 
test. However, the strain rate related to the minimum displacement rate can be determined by 
using equ (40) with paD b=  and b  is obtained from Fig. 38. The minimum creep strain rate 
obtained from a uniaxial creep test is approximately related to the creep strain rate at a strain 
of 'e  in the tertiary region, for a ductile material, via the relationship ( ) ( )nmin '1/' e+ee=ee !! , 
see equation (52). At the minimum displacement rate position in a SPT, 'e  can be estimated 
from one of the relationships between e  and D  (e.g. equation (1)), Fig. 9, Fig 22(b), Fig 
24(a), etc) and hence the strain rate obtained using equation (40) can be converted to the 
corresponding minimum creep strain rate using equation (52), i.e., ( ) ( )nmin '1/' e+e=ee=e !! . If 
a series of tests are performed with different load levels (hence different refs  values) and the 

( )minlog e! , calculated as indicated above, is plotted against ( )reflog s , this will correlated with 
the data obtained from uniaxial tests, provided the material is “ductile”. For a brittle material, 
the gradient obtained from the SPT data may not be exactly the same as that obtained for 
minimum uniaxial creep strain rate data. 
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Fig. 1 (a) Typical conventional creep test specimen (GL ≈ 50mm,  dGL ≈ 10mm); (b) 
Uniaxial creep strain curves for a P91 steel at 650o C; (c) Creep rupture data for a P91 steel at 

650o C. 

 

 

Fig. 2 Commonly used small specimens: (a) conventional sub - size uniaxial specimen; (b) 
impression creep specimen, and (c) small punch specimen. 

 

 

	

Fig. 3(a) Schematic diagram of typical SPT setup. 
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Fig. 3(b) Schematic representation of displacement versus time curve from SPT showing 
different deformation regions(where Δi is the instantaneous elastic and plastic deformation): 

a) reducing deformation rate; b) approximately constant deformation rate; c) increasing 
deformation rate; d) deformation occurring during reducing deformation rate; e) deformation 
occurring during "constant" deformation rate, and f) deformation occurring during increasing 

deformation rate. 
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Fig. 3(c) Typical small punch test curves for different zones of a P91 weldment [11]. 

BM, HAZ and WM are the base material, heat-affected zone and weld metal, respectively. 

	

	

 

 

Fig. 4 Initial and deformed (assumed constant thickness) shape of the SPT specimen. 

 

 

 

F	 E	

Rs	

D	

L	

P 
'o 	

o	

'C 	

	C	

'B  

ap		

B	

q	

to	

D	
t	

r	

A	

sm	

  P 

t	

h	



26 
	

Fig. 5 Variation of t/to with q. 

 

 

 

Fig. 6 Variations of t/to with Δ/ap. 
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Fig. 7 Variations of Δ/ap with q. 

 

 

 

Fig. 8 Variations of εm with q. 

 

 

 

Fig. 9 Variations of εm with Δ/ap. 
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Fig. 10 Variation of σm/(P/2πRsto) with q. 

 

 

 

Fig. 11 Variations of σm/(P/2πRsto) with D/ap 
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Fig. 12(a) Variations of εm with Δ/ap for ap = 2mm and Rs = 1.25mm. 

	

	

	

Fig. 12(b) Variations of P/σm with Δ/ap, for ap = 2mm, Rs = 1.25mm and to = 0.5mm. 
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Fig A2.1 Creep strain data for a ductile (Norton creep law) failue model
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Fig 13 Creep strain data for a ductile (Norton creep law) failure model 

 

 

Fig A2.2 Creep rupture data for a ductile (Norton creep law) failue model 
based on constants for 316 stainless steel at 600°C
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Fig 14 Creep rupture data for a ductile (Norton creep law) failure model, based on constants 
for 316 stainless steel at 600°C (gradient = -1/n) 
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Fig A3.1 Creep strain data for a brittle (Kachanov damage) failue model 
using constants for 316 stainless steel at 600°C
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Fig 15 Creep strain data for a brittle (Kachanov damage) failure model, using constants for 
316 stainless steel at 600°C 

 

 

Fig A3.2 Creep rupture data for a brittle (Kachanov damage) failure 
model using constants for 316 stainless steel at 600°C
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Fig 16 Creep rupture data for a brittle (Kachanov damage) failure model using constants for 
316 stainless steel at 600°C (gradient = -1/χ) 
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Fig A4.3 Variation of creep strain rate with σ on a log-log scale for a 
material obeying a "ductile" Norton model (for 316 stainless steel at 600°C)
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Fig 17 Variations of creep strain rate with σ on a log-log scale for a material obeying a 
"ductile" Norton model (for 316 stainless steel at 600°C) 

 

 

Fig A4.4a Creep strain rate vs. σ on a log-log scale using the Liu and 
Murakami damage model (for 316 stainless steel at 600°C)
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Fig 18(a) Creep strain rate vs. σ on a log-log scale using the Liu and Murakami damage 
model (for 316 stainless steel at 600°C) 
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Fig A4.4b Creep strain rate vs. σ on a log-log scale using the Liu and 
Murakami damage model (for P91 steel at 650°C) 
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Fig 18(b) Creep strain rate vs. σ on a log-log scale using the Liu and Murakami [20] damage 
model (for P91 steel at 650°C) 

 

 

Fig A4.5a Creep strain rate vs. σ on a log-log scale using the Kachanov 
damage model (for 316 stainless steel at 600°C) 
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Fig 19(a) Creep strain rate vs. σ on a log-log scale using the Kachanov damage model (for 
316 stainless steel at 600°C) 
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Fig A4.5b Creep strain rate vs. σ on a log-log scale using the Kachanov 
damage model (for P91 steel at 650°C)

-5

-4.5

-4

-3.5

-3

-2.5

1.84 1.85 1.86 1.87 1.88
σ

C
re

ep
 st

ra
in

 r
at

e

Min rates
Rates at strain = 0.1
Rates at strain = 0.15
Rates at strain = 0.2
Rates at strain = 0.25

 

Fig 19(b) Creep strain rate vs. σ on a log-log scale using the Kachanov damage model (for 
P91 steel at 650°C) 

 

 

	

Fig. 20 FE model used for the SPT analyses. 
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Fig. 21 Δ versus tf for Norton law creep behaviour with n=6.05, 8.4617, 11.36. 

 

 

 

(a) Position A; n = 6.05 
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(b) Position B; n = 6.05 

 

 

 

(c) Position C; n = 6.05 

Fig. 22 εm versus Δ at inside, i, middle, m, and outside, o. 
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Fig. 23 Variation of P/σm with Δ (middle, m); n = 6.05 

 

 

 

Fig. 24(a) εm (middle, m) versus Δ at three positions; n = 8.4617. 
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Fig. 24(b) Variation of P/σm with Δ; n = 8.4617. 

 

 

 

Fig 25(a) εm (middle, m) versus Δ at three positions; n = 11.36. 
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Fig. 25(b) Variation of P/σm with Δ; n = 11.36. 

 

 

 

Fig. 26 FE predictions of log (
minD! ) versus log (P) based on Norton`s law 

(n = 6.05; B = 1.88e-18, n = 8.4617;B = 1.09e-20, n = 11.36; B = 5.38e-29). 
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Fig. 27 FE predictions of log (P) versus log (tf) based on Norton`s law 

(n = 6.05; n = 8.4617; n = 11.36).	

 

 

 

Fig. 28 log ( ) versus log (P) for different displacements(n = 11.36; B = 5.38e-29). 
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Fig. 29 Variation of gradient (of log ( ) versus log (P)) with Δ. 

 

 

 

Fig. 30 Comparison of Δ versus t/tf for both Kachanov damage model and Norton`s law. 
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(a) Position A 

 

 

 

(b) Position B 
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(c) Position C 

Fig. 31 εm versus Δ at inside, i, middle, m, and outside, o, for both Kachanov damage model 
and Norton`s law. 

 

 

 

(a) Position A 
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(b) Position B 

Fig. 32 Variation of P/σm with Δ/ap(middle, m) for both Kachanov and Norton models. 

 

 

Fig 18. FE predictions of log (P) versus log (tf) based on Kachanov damage 
model.
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Fig. 33 FE predictions of log (P) versus log (tf) based on Kachanov damage model. 



45 
	

 

Fig. 34 FE predictions of ( )D!log  versus ( )Plog  based on Kachanov damage model for 
different Δ values. 

 

 

 

Fig. 35 Variation of the gradient for log ( ) versus log (P) with Δ for Kachanov model.(n = 
8.4617, χ = 6.789) 
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Fig. 36 Variations of ( ) ( )[ ]nnompmin Ba/log asD!  with n for various α-values. 

 

 

 

Fig. 37 Variations of log ( /Bap(ησnom)n) with n for various of Δ-values for the α-values 
which produce approximately horizontal lines (N.B. for this condition α = η). 
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Fig. 38 Variation of reference parameters (α and β) with Δ. 

 

 

 

Fig. 39 Variation of P/σm with Δ/ap 
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Fig. 40 Variations of σref/P with t/tf, for different n-values.	

 

 

Fig. A4.1 Typical creep curves showing the primary, secondary and 
tertiary regions (for 316 stainless steel at 600°C)
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Fig. 41 Typical creep curves showing the primary, secondary and tertiary regions (for 316 
stainless steel at 600°C) 
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Fig. A4.2 Linear fit to minimum creep strain rate vs. σ on a log-log scale 
for a material obeying Norton's creep law (for 316 stainless steel at 600°C)  
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Fig. 42 Linear fit to minimum creep strain rate vs. σ on a log-log scale for a material obeying 
Norton's creep law (for 316 stainless steel at 600°C) 

 

 


