676 research outputs found

    Anatomy of a Dansgaard-Oeschger warming transition: High-resolution analysis of the North Greenland Ice Core Project ice core

    Get PDF
    Large and abrupt temperature oscillations during the last glacial period, known as Dansgaard‐Oeschger (DO) events, are clearly observed in the Greenland ice core record. Here we present a new high‐resolution chemical (2 mm) and stable isotope (20 mm) record from the North Greenland Ice Core Project (NGRIP) ice core at the onset of one of the most prominent DO events of the last glacial, DO‐8, observed ∼38,000 years ago. The unique, subannual‐resolution NGRIP record provides a true sequence of change during a DO warming with detailed annual layer counting of very high depth resolution geochemical measurements used to determine the exact duration of the transition. The continental ions, indicative of long‐range atmospheric loading and dustiness from East Asia, are the first to change, followed by the snow accumulation, the moisture source conditions, and finally the atmospheric temperature in Greenland. The sequence of events shows that atmospheric and oceanic source and circulation changes preceded the DO warming by several years

    Whole-Body Vibration Alleviates Symptoms of Morphine Withdrawal

    Get PDF
    Whole-body vibration at 80 Hz has previously been shown to blunt neuropathological markers and behavioral symptoms of alcohol dependence. Here, we evaluate its ability to ameliorate symptoms of morphine use and withdrawal. Behavioral and neurophysiological symptoms of withdrawal were reduced significantly by whole-body vibration treatment

    SUMOylation of synaptic and synapse-associated proteins:An update

    Get PDF
    SUMOylation is a post‐translational modification that regulates protein signalling and complex formation by adjusting the conformation or protein–protein interactions of the substrate protein. There is a compelling and rapidly expanding body of evidence that, in addition to SUMOylation of nuclear proteins, SUMOylation of extranuclear proteins contributes to the control of neuronal development, neuronal stress responses and synaptic transmission and plasticity. In this brief review we provide an update of recent developments in the identification of synaptic and synapse‐associated SUMO target proteins and discuss the cell biological and functional implications of these discoveries. [Image: see text

    Investigation of reactive‐ion‐etch‐induced damage of InP/InGaAs multiple quantum wells by photoluminescence

    Get PDF
    The effects of CH4/H2 reactive ion etching (RIE) on the optical properties of an InP/InGaAs multiple‐quantum‐well structure have been investigated by low‐temperature photoluminescence (PL). The structure consisted of eight InGaAs quantum wells, lattice matched to InP, with nominal thicknesses of 0.5, 1, 2, 3, 5, 10, 20, and 70 monolayers, respectively, on top of a 200‐nm‐thick layer of InGaAs for calibration. The design of this structure allowed etch‐induced damage depth to be obtained from the PL spectra due to the different confinement energies of the quantum wells. The samples showed no significant decrease of luminescence intensity after RIE. However, the observed shift and broadening of the PL peaks from the quantum wells indicate that intermixing of well and barrier material increased with etch time. © 1995 American Institute of Physics.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/70403/2/JAPIAU-78-3-1528-1.pd

    Shared decision making with breast cancer patients - does it work? Results of the cluster-randomized, multicenter DBCG RT SDM trial

    Get PDF
    Background and purpose: Shared decision making (SDM) is a patient engaging process advocated especially for preference-sensitive decisions, such as adjuvant treatment after breast cancer. An increasing call for patient engagement in decision making highlights the need for a systematic SDM approach. The objective of this trial was to investigate whether the Decision Helper (DH), an in-consultation patient decision aid, increases patient engagement in decisions regarding adjuvant whole breast irradiation.Material and methods: Oncologists at four radiotherapy units were randomized to practice SDM using the DH versus usual practice. Patient candidates for adjuvant whole breast irradiation after breast conserving surgery for node-negative breast cancer were eligible. The primary endpoint was patient-reported engagement in the decision process assessed with the Shared Decision Making Questionnaire (SDM-Q-9) (range 0-100, 4 points difference considered clinical relevant). Other endpoints included oncologist-reported patient engagement, decisional conflict, fear of cancer recurrence, and decision regret after 6 months.Results: Of the 674 included patients, 635 (94.2%) completed the SDM-Q-9. Patients in the intervention group reported higher level of engagement (median 80; IQR 68.9 to 94.4) than the control group (71.1; IQR 55.6 to 82.2; p < 0.0001). Oncologist-reported patient engagement was higher in the invention group (93.3; IQR 82.2 to 100) compared to control group (73.3; IQR 60.0 to 84.4) (p < 0.0001).Conclusion: Patient engagement in medical decision making was significantly improved with the use of an in-consultation patient decision aid compared to standard. The DH on adjuvant whole breast irradiation is now recommended as standard of care in the Danish guideline

    Mechanisms explaining transitions between tonic and phasic firing in neuronal populations as predicted by a low dimensional firing rate model

    Get PDF
    Several firing patterns experimentally observed in neural populations have been successfully correlated to animal behavior. Population bursting, hereby regarded as a period of high firing rate followed by a period of quiescence, is typically observed in groups of neurons during behavior. Biophysical membrane-potential models of single cell bursting involve at least three equations. Extending such models to study the collective behavior of neural populations involves thousands of equations and can be very expensive computationally. For this reason, low dimensional population models that capture biophysical aspects of networks are needed. \noindent The present paper uses a firing-rate model to study mechanisms that trigger and stop transitions between tonic and phasic population firing. These mechanisms are captured through a two-dimensional system, which can potentially be extended to include interactions between different areas of the nervous system with a small number of equations. The typical behavior of midbrain dopaminergic neurons in the rodent is used as an example to illustrate and interpret our results. \noindent The model presented here can be used as a building block to study interactions between networks of neurons. This theoretical approach may help contextualize and understand the factors involved in regulating burst firing in populations and how it may modulate distinct aspects of behavior.Comment: 25 pages (including references and appendices); 12 figures uploaded as separate file

    Risk Theory with Affine Dividend Payment Strategies

    Get PDF
    We consider a classical compound Poisson risk model with affine dividend payments. We illustrate how both by analytical and probabilistic techniques closed-form expressions for the expected discounted dividends until ruin and the Laplace transform of the time to ruin can be derived for exponentially distributed claim amounts. Moreover, numerical examples are given which compare the performance of the proposed strategy to classical barrier strategies and illustrate that such affine strategies can be a noteworthy compromise between profitability and safety in collective risk theory
    corecore