47,275 research outputs found

    Photovoltaic Power Without Batteries for Continuous Cathodic Protection

    Get PDF
    The objective of this project was to successfully demonstrate that renewable energy can efficiently and economically replace dedicated non-renewable power sources. The COASTSYSTA designed, installed, and started up on 20 Jan. 1990, a state-of-the-art photovoltaic powered impressed current cathodic protection system (PVCPSYS) for steel and iron submerged structures. This system does not require any auxiliary/battery backup power. The PVCPSYS installed on 775 ft. of steel sheet piling of a Navy bulkhead is continuing to provide complete, continuous corrosion protection. This installation is well documented by COASTSYSTA and was verified on-site by the U.S. Army Corps of Engineers. The PVCPSYS uses only renewable energy and is environmentally clean. A patent is pending on the new technology. Other possible PVCPSYS applications are mothballed ships, docks, dams, locks, bridges, marinas, and pipelines. The Department of Defense Photovoltaic Review Committee and Sandia National Laboratories consider this successful and cost effective system a major advance in the application of photovoltaics

    Weathering the End Times

    Get PDF
    “Weathering the End Times” first addresses some of the major arguments for and against man-caused Climate Change, and then portrays where the various elements of Christendom fall within this debate. It goes on to examine the prophetic Scriptures that relate to the environments of the Tribulation, Millennial Kingdom and Eternal State, concluding that God-caused Climate Change is what believers truly need to focus on

    Investigation of high frequency oscillations in the OV102 elevon actuation subsystems using continuous system modeling program simulation

    Get PDF
    Two theories emerged as the cause of undesired oscillations at frequencies between 40 and 60 Hz in the Orbiter Vehicle inboard and outboard elevon actuation subsystems during hardware testing. Both the "hardover feedback" and "deadspace" theories were examined using continuous system modeling program simulation. Results did not support the "hardover feedback" theory but showed that deadspace in the torque feedback spring connections to the servospools must be considered to be a possible cause of the oscillations. Further investigation is recommended

    Velocity vector control system augmented with direct lift control

    Get PDF
    A pilot-controlled stability control system that employs direct lift control (spoiler control) with elevator control to control the flight path angle of an aircraft is described. A computer on the aircraft generates an elevator control signal and a spoiler control signal, using a pilot-controlled pitch control signal and pitch rate, vertical velocity, roll angle, groundspeed, engine pressure ratio and vertical acceleration signals which are generated on the aircraft. The direct lift control by the aircraft spoilers improves the response of the aircraft flight path angle and provides short term flight path stabilization against environmental disturbances

    NeuroFlow: A General Purpose Spiking Neural Network Simulation Platform using Customizable Processors

    Get PDF
    © 2016 Cheung, Schultz and Luk.NeuroFlow is a scalable spiking neural network simulation platform for off-the-shelf high performance computing systems using customizable hardware processors such as Field-Programmable Gate Arrays (FPGAs). Unlike multi-core processors and application-specific integrated circuits, the processor architecture of NeuroFlow can be redesigned and reconfigured to suit a particular simulation to deliver optimized performance, such as the degree of parallelism to employ. The compilation process supports using PyNN, a simulator-independent neural network description language, to configure the processor. NeuroFlow supports a number of commonly used current or conductance based neuronal models such as integrate-and-fire and Izhikevich models, and the spike-timing-dependent plasticity (STDP) rule for learning. A 6-FPGA system can simulate a network of up to ~600,000 neurons and can achieve a real-time performance of 400,000 neurons. Using one FPGA, NeuroFlow delivers a speedup of up to 33.6 times the speed of an 8-core processor, or 2.83 times the speed of GPU-based platforms. With high flexibility and throughput, NeuroFlow provides a viable environment for large-scale neural network simulation

    Laser geodynamic satellite (LAGEOS II)

    Get PDF
    The Laser Geodynamic Satellite 2 (LAGEOS 2) is nearly identical to the LAGEOS 1 satellite, which was launched by NASA in 1976. However, LAGEOS 2 is completely passive, and is equipped with fused silian corner reflectors for ranging with ground-based lasers. The addition of LAGEOS 2 will provide the GSFC laser network with significantly increased satellite tracking opportunities, because LAGEOS 1 is at a 110-degree inclination and LAGEOS 2 will be at a 52-degree inclination. The flight profile is given, and information is presented in tabular form on the following topics: Deep Space Network support, frequency assignments, telemetry, tracking, and tracking support responsibility

    Feature discrimination/identification based upon SAR return variations

    Get PDF
    A study of the statistics of The look-to-look variation statistics in the returns recorded in-flight by a digital, realtime SAR system are analyzed. The determination that the variations in the look-to-look returns from different classes do carry information content unique to the classes was illustrated by a model based on four variants derived from four look in-flight SAR data under study. The model was limited to four classes of returns: mowed grass on a athletic field, rough unmowed grass and weeds on a large vacant field, young fruit trees in a large orchard, and metal mobile homes and storage buildings in a large mobile home park. The data population in excess of 1000 returns represented over 250 individual pixels from the four classes. The multivariant discriminant model operated on the set of returns for each pixel and assigned that pixel to one of the four classes, based on the target variants and the probability distribution function of the four variants for each class

    Kinetic Analysis of the Thermal Degradation of Polystyrene-Montmorillonite Nanocomposite

    Get PDF
    Nanocomposites exhibit a combination of unique properties, such as increased heat distortion temperature, reduced permeability, reduced flammability and improved mechanical properties. In this work, a polystyrene (PS) clay nanocomposite was prepared via bulk polymerization using a novel organically modified montmorillonite (MMT). The organic-modifier is the N,N-dimethyl-n-hexadecyl-(4-vinylbenzyl) ammonium chloride (VB16). The thermal stability of PS–VB16 compared to pure PS is examined in pyrolytic and thermo-oxidative conditions. It is then studied using a kinetic analysis. It is shown that the stability of PS is significantly increased in the presence of clay. The thermal behavior of PS and PS nanocomposite is modeled and simulated. A very good agreement between experimental and simulated curves both in dynamic and isothermal conditions is observed. Using kinetic analysis associated to the reaction to fire of PS nanocomposite simulated in a cone calorimeter, the peak of heat release rate is half that of virgin PS, it is suggested that the clay acts as a char promoter slowing down the degradation and providing a protective barrier to the nanocomposite. The combination of these two effects is an important factor lowering the HRR

    Instructor and student pilots' subjective evaluation of a general aviation simulator with a terrain visual system

    Get PDF
    Ten student pilots were given a 1 hour training session in the NASA Langley Research Center's General Aviation Simulator by a certified flight instructor and a follow-up flight evaluation was performed by the student's own flight instructor, who has also flown the simulator. The students and instructors generally felt that the simulator session had a positive effect on the students. They recommended that a simulator with a visual scene and a motion base would be useful in performing such maneuvers as: landing approaches, level flight, climbs, dives, turns, instrument work, and radio navigation, recommending that the simulator would be an efficient means of introducing the student to new maneuvers before doing them in flight. The students and instructors estimated that about 8 hours of simulator time could be profitably devoted to the private pilot training

    Effects of curved approach paths and advanced displays on pilot scan patterns

    Get PDF
    The effect on pilot scan behavior of both advanced cockpit and advanced manuevers was assessed. A series of straight-in and curved landing approaches were performed in the Terminal Configured Vehicle (TCV) simulator. Two comparisons of pilot scan behavior were made: (1) pilot scan behavior for straight-in approaches compared with scan behavior previously obtained in a conventionally equipped simulator, and (2) pilot scan behavior for straight-in approaches compared with scan behavior for curved approaches. The results indicate very similar scanning patterns during the straight-in approaches in the conventional and advanced cockpits. However, for the curved approaches pilot attention shifted to the electronic horizontal situation display (moving map), and a new eye scan path appeared between the map and the airspeed indicator. The very high dwell percentage and dwell times on the electronic displays in the TCV simulator during the final portions of the approaches suggest that the electronic attitude direction indicator was well designed for these landing approaches
    corecore