1,890 research outputs found

    A helium-3 refrigerator employing capillary confinement of liquid cryogen

    Get PDF
    A condensation refrigerator suitable for operation in a zero gravity space environment was constructed. The condensed liquid refrigerant is confined by surface tension inside a porous metal matrix. Helium-4 and helium-3 gases were condensed and held in a copper matrix. Evaporative cooling of confined liquid helium-4 resulted in a temperature of 1.4K. Using a zeolite adsorption pump external to the cryostat, a temperature of 0.6 K was achieved through evaporative cooling of liquid helium-3. The amount of time required for complete evaporation of a controlled mass of liquid helium-4 contained in the copper matrix was measured as a function of the applied background power. For heating powers below 18 mW the measured times are consistent with the normal boiling of the confined volume of liquid refrigerant. At background powers above 18 mW the rapid rise in the temperature of the copper matrix the signature of the absence of confined liquid occurs in a time a factor of two shorter than that expected on the basis of an extrapolation of the low power data

    Isolated, slowly evolving, and dynamical trapping horizons: geometry and mechanics from surface deformations

    Get PDF
    We study the geometry and dynamics of both isolated and dynamical trapping horizons by considering the allowed variations of their foliating two-surfaces. This provides a common framework that may be used to consider both their possible evolutions and their deformations as well as derive the well-known flux laws. Using this framework, we unify much of what is already known about these objects as well as derive some new results. In particular we characterize and study the "almost-isolated" trapping horizons known as slowly evolving horizons. It is for these horizons that a dynamical first law holds and this is analogous and closely related to the Hawking-Hartle formula for event horizons.Comment: 39 pages, 6 figures, version to appear in PRD : a few minor changes and many typos corrected in equation

    Spacetime Embedding Diagrams for Black Holes

    Get PDF
    We show that the 1+1 dimensional reduction (i.e., the radial plane) of the Kruskal black hole can be embedded in 2+1 Minkowski spacetime and discuss how features of this spacetime can be seen from the embedding diagram. The purpose of this work is educational: The associated embedding diagrams may be useful for explaining aspects of black holes to students who are familiar with special relativity, but not general relativity.Comment: 22 pages, 21 figures, RevTex. To be submitted to the American Journal of Physics. Experts will wish only to skim appendix A and to look at the pictures. Suggested Maple code is now compatible with MapleV4r

    Effects of interaction on an adiabatic quantum electron pump

    Full text link
    We study the effects of inter-electron interactions on the charge pumped through an adiabatic quantum electron pump. The pumping is through a system of barriers, whose heights are deformed adiabatically. (Weak) interaction effects are introduced through a renormalisation group flow of the scattering matrices and the pumped charge is shown to {\it always} approach a quantised value at low temperatures or long length scales. The maximum value of the pumped charge is set by the number of barriers and is given by Qmax=nb1Q_{\rm max} = n_b -1. The correlation between the transmission and the charge pumped is studied by seeing how much of the transmission is enclosed by the pumping contour. The (integer) value of the pumped charge at low temperatures is determined by the number of transmission maxima enclosed by the pumping contour. The dissipation at finite temperatures leading to the non-quantised values of the pumped charge scales as a power law with the temperature (QQintT2αQ-Q_{\rm int} \propto T^{2\alpha}), or with the system size (QQintLs2αQ-Q_{\rm int} \propto L_s^{-2\alpha}), where α\alpha is a measure of the interactions and vanishes at T=0 (Ls=)T=0 ~(L_s=\infty). For a double barrier system, our result agrees with the quantisation of pumped charge seen in Luttinger liquids.Comment: 9 pages, 9 figures, better quality figures available on request from author

    A New World Average Value for the Neutron Lifetime

    Full text link
    The analysis of the data on measurements of the neutron lifetime is presented. A new most accurate result of the measurement of neutron lifetime [Phys. Lett. B 605 (2005) 72] 878.5 +/- 0.8 s differs from the world average value [Phys. Lett. B 667 (2008) 1] 885.7 +/- 0.8 s by 6.5 standard deviations. In this connection the analysis and Monte Carlo simulation of experiments [Phys. Lett. B 483 (2000) 15] and [Phys. Rev. Lett. 63 (1989) 593] is carried out. Systematic errors of about -6 s are found in each of the experiments. The summary table for the neutron lifetime measurements after corrections and additions is given. A new world average value for the neutron lifetime 879.9 +/- 0.9 s is presented.Comment: 27 pages, 13 figures; Fig.13 update

    Testing the Unitarity of the CKM Matrix with a Space-Based Neutron Decay Experiment

    Full text link
    If the Standard Model is correct, and fundamental fermions exist only in the three generations, then the CKM matrix should be unitary. However, there remains a question over a deviation from unitarity from the value of the neutron lifetime. We discuss a simple space-based experiment that, at an orbit height of 500 km above Earth, would measure the kinetic-energy, solid-angle, flux spectrum of gravitationally bound neutrons (kinetic energy K<0.606 eV at this altitude). The difference between the energy spectrum of neutrons that come up from the Earth's atmosphere and that of the undecayed neutrons that return back down to the Earth would yield a measurement of the neutron lifetime. This measurement would be free of the systematics of laboratory experiments. A package of mass <25<25 kg could provide a 10^{-3} precision in two years.Comment: 10 pages, 4 figures. Revised and updated for publicatio

    Can mesoscopic fluctuations reverse the supercurrent through a disordered Josephson junction?

    Full text link
    We calculate the Josephson coupling energy UJ(ϕ)U_J(\phi) (related to the supercurrent I=(2e/)dUJ/dϕI=(2e/\hbar) dU_J/d\phi) for a disordered normal metal between two superconductors with a phase difference ϕ\phi. We demonstrate that the symmetry of the scattering matrix of non-interacting quasiparticles in zero magnetic field implies that UJ(ϕ)U_J(\phi) has a minimum at ϕ=0\phi=0. A maximum (that would lead to a π\pi-junction or negative superfluid density) is excluded for any realization of the disorder.Comment: 2 page

    Covariant coarse-graining of inhomogeneous dust flow in General Relativity

    Full text link
    A new definition of coarse-grained quantities describing the dust flow in General Relativity is proposed. It assigns the coarse--grained expansion, shear and vorticity to finite-size comoving domains of fluid in a covariant, coordinate-independent manner. The coarse--grained quantities are all quasi-local functionals, depending only on the geometry of the boundary of the considered domain. They can be thought of as relativistic generalizations of simple volume averages of local quantities in a flat space. The procedure is based on the isometric embedding theorem for S^2 surfaces and thus requires the boundary of the domain in question to have spherical topology and positive scalar curvature. We prove that in the limit of infinitesimally small volume the proposed quantities reproduce the local expansion, shear and vorticity. In case of irrotational flow we derive the time evolution for the coarse-grained quantities and show that its structure is very similar to the evolution equation for their local counterparts. Additional terms appearing in it may serve as a measure of the backreacton of small-scale inhomogeneities of the flow on the large-scale motion of the fluid inside the domain and therefore the result may be interesting in the context of the cosmological backreaction problem. We also consider the application of the proposed coarse-graining procedure to a number of known exact solutions of Einstein equations with dust and show that it yields reasonable results.Comment: 17 pages, 5 figures. Version accepted in Classical and Quantum Gravity

    Generalized Paraxial Ray Trace Procedure Derived from Geodesic Deviation

    Full text link
    Paraxial ray tracing procedures have become widely accepted techniques for acoustic models in seismology and underwater acoustics. To date a generic form of these procedures including fluid motion and time dependence has not appeared in the literature. A detailed investigation of the characteristic curves of the equations of hydrodynamics allows for an immediate generalization of the procedure to be extracted from the equation form geodesic deviation. The general paraxial ray trace equations serve as an ideal supplement to ordinary ray tracing in predicting the deformation of acoustic beams in random environments. The general procedure is derived in terms of affine parameterization and in a coordinate time parameterization ideal for application to physical acoustic ray propagation. The formalism is applied to layered media, where the deviation equation reduces to a second order differential equation for a single field with a general solution in terms of a depth integral along the ray path. Some features are illustrated through special cases which lead to exact solutions in terms of either ordinary or special functions.Comment: Original; 40 pages (double spaced), 1 figure Replaced version; 36 pages single spaced, 7 figures. Expanded content; Complete derivation of the equations from the equations of hydrodynamics, introduction of an auxiliary basis for three dimensional wave-front modeling. Typos in text and equations correcte

    Propagation of coherent waves in elastically scattering media

    Full text link
    A general method for calculating statistical properties of speckle patterns of coherent waves propagating in disordered media is developed. It allows one to calculate speckle pattern correlations in space, as well as their sensitivity to external parameters. This method, which is similar to the Boltzmann-Langevin approach for the calculation of classical fluctuations, applies for a wide range of systems: From cases where the ray propagation is diffusive to the regime where the rays experience only small angle scattering. The latter case comprises the regime of directed waves where rays propagate ballistically in space while their directions diffuse. We demonstrate the applicability of the method by calculating the correlation function of the wave intensity and its sensitivity to the wave frequency and the angle of incidence of the incoming wave.Comment: 19 pages, 5 figure
    corecore