125 research outputs found

    Identification of an iron–hepcidin complex

    Get PDF
    Following its identification as a liver-expressed antimicrobial peptide, the hepcidin peptide was later shown to be a key player in iron homoeostasis. It is now proposed to be the 'iron hormone' which, by interacting with the iron transporter ferroportin, prevents further iron import into the circulatory system. This conclusion was reached using the corresponding synthetic peptide, emphasizing the functional importance of the mature 25-mer peptide, but omitting the possible functionality of its maturation. From urine-purified native hepcidin, we recently demonstrated that a proportion of the purified hepcidin had formed iron-hepcidin complexes. This interaction was investigated further by computer modelling and, based on the sequence similarity of hepcidin with metallothionein, a three-dimensional model of hepcidin, containing one atom of iron, was constructed. To characterize these complexes further, the interaction with iron was analysed using different spectroscopic methods. Monoferric hepcidin was identified by MS, as were possibly other complexes containing two and three atoms of iron respectively, although these were present only in minor amounts. UV/visible absorbance and CD studies identified the iron-binding events which were facilitated at a physiological pH. EPR spectroscopy identified the ferric state of the bound metal, and indicated that the iron-hepcidin complex shares some similarities with the rubredoxin iron-sulfur complex, suggesting the presence of Fe(3+) in a tetrahedral sulfur co-ordination. The potential roles of iron binding for hepcidin are discussed, and we propose either a regulatory function in the maturation of pro-hepcidin into active hepcidin or as the necessary link in the interaction between hepcidin and ferroportin

    Peptide exchange on MHC-I by TAPBPR is driven by a negative allostery release cycle.

    Get PDF
    Chaperones TAPBPR and tapasin associate with class I major histocompatibility complexes (MHC-I) to promote optimization (editing) of peptide cargo. Here, we use solution NMR to investigate the mechanism of peptide exchange. We identify TAPBPR-induced conformational changes on conserved MHC-I molecular surfaces, consistent with our independently determined X-ray structure of the complex. Dynamics present in the empty MHC-I are stabilized by TAPBPR and become progressively dampened with increasing peptide occupancy. Incoming peptides are recognized according to the global stability of the final pMHC-I product and anneal in a native-like conformation to be edited by TAPBPR. Our results demonstrate an inverse relationship between MHC-I peptide occupancy and TAPBPR binding affinity, wherein the lifetime and structural features of transiently bound peptides control the regulation of a conformational switch located near the TAPBPR binding site, which triggers TAPBPR release. These results suggest a similar mechanism for the function of tapasin in the peptide-loading complex

    Time domains of hypoxia responses and -omics insights

    Get PDF
    The ability to respond rapidly to changes in oxygen tension is critical for many forms of life. Challenges to oxygen homeostasis, specifically in the contexts of evolutionary biology and biomedicine, provide important insights into mechanisms of hypoxia adaptation and tolerance. Here we synthesize findings across varying time domains of hypoxia in terms of oxygen delivery, ranging from early animal to modern human evolution and examine the potential impacts of environmental and clinical challenges through emerging multi-omics approaches. We discuss how diverse animal species have adapted to hypoxic environments, how humans vary in their responses to hypoxia (i.e., in the context of high-altitude exposure, cardiopulmonary disease, and sleep apnea), and how findings from each of these fields inform the other and lead to promising new directions in basic and clinical hypoxia research

    Model for the Peptide-Free Conformation of Class II MHC Proteins

    Get PDF
    Background: Major histocompatibility complex proteins are believed to undergo significant conformational changes concomitant with peptide binding, but structural characterization of these changes has remained elusive. Methodology/Principal Findings: Here we use molecular dynamics simulations and experimental probes of protein conformation to investigate the peptide-free state of class II MHC proteins. Upon computational removal of the bound peptide from HLA-DR1-peptide complex, the a50-59 region folded into the P1-P4 region of the peptide binding site, adopting the same conformation as a bound peptide. Strikingly, the structure of the hydrophobic P1 pocket is maintained by engagement of the side chain of Phe a54. In addition, conserved hydrogen bonds observed in crystal structures between the peptide backbone and numerous MHC side chains are maintained between the a51-55 region and the rest of the molecule. The model for the peptide-free conformation was evaluated using conformationally-sensitive antibody and superantigen probes predicted to show no change, moderate change, or dramatic changes in their interaction with peptide-free DR1 and peptide-loaded DR1. The binding observed for these probes is in agreement with the movements predicted by the model. Conclusion/Significance: This work presents a molecular model for peptide-free class II MHC proteins that can help to interpret the conformational changes known to occur within the protein during peptide binding and release, and ca
    corecore