2,935 research outputs found

    Reply to"Comment on 'Simple approach to the creation of a strange nonchaotic attractor in any chaotic system' "

    Get PDF
    We have recently proposed a simple method to create a strange nonchaotic attractor with any chaotic system [Phys. Rev. E 59, 5338 (1999)]. Such a system is controlled to switch periodically between a chaotic and a quasiperiodic attractor, each with an appropriate time duration. A topological condition for this approach is pointed out in the preceding Comment by Neumann and Pikovsky [Phys. Rev. E 64, 058201 (2001)]. We show that this, condition is not necessary if the durations are sufficiently long. Our approach is a general method to construct a strange nonchaotic attractor in any chaotic system

    Sensitivity of Ag/Al Interface Specific Resistances to Interfacial Intermixing

    Full text link
    We have measured an Ag/Al interface specific resistance, 2AR(Ag/Al)(111) = 1.4 fOhm-m^2, that is twice that predicted for a perfect interface, 50% larger than for a 2 ML 50%-50% alloy, and even larger than our newly predicted 1.3 fOhmm^2 for a 4 ML 50%-50% alloy. Such a large value of 2ARAg/Al(111) confirms a predicted sensitivity to interfacial disorder and suggests an interface greater than or equal to 4 ML thick. From our calculations, a predicted anisotropy ratio, 2AR(Ag/Al)(001)/2AR(Ag/Al)(111), of more then 4 for a perfect interface, should be reduced to less than 2 for a 4 ML interface, making it harder to detect any such anisotropy.Comment: 3 pages, 2 figures, 1 table. In Press: Journal of Applied Physic

    Antiperovskite Li3OCl Superionic Conductor Films for Solid-State Li-Ion Batteries.

    Get PDF
    Antiperovskite Li3OCl superionic conductor films are prepared via pulsed laser deposition using a composite target. A significantly enhanced ionic conductivity of 2.0 × 10-4 S cm-1 at room temperature is achieved, and this value is more than two orders of magnitude higher than that of its bulk counterpart. The applicability of Li3OCl as a solid electrolyte for Li-ion batteries is demonstrated

    Entropically enhanced excitability in small systems

    Get PDF
    We consider the dynamics of small excitable systems, ubiquitous in physics, chemistry, and biology. Spontaneous excitation rates induced by system-size fluctuations exhibit sharp maxima at multiple, small system sizes at which also the system's response to external perturbations is strongly enhanced. This novel effect is traced back to algebraic features of small integers and thus generic

    Optimal intracellular calcium signaling

    Get PDF
    In many cell types, calcium is released from internal stores through calcium release channels upon external stimulation (e.g., pressure or receptor binding), These channels are clustered with a typical cluster size of about 20 channels, generating stochastic calcium puffs, We find that the clustering of the release channels in small clusters increases the sensitivity of the calcium response, allowing for coherent calcium responses at signals to which homogeneously distributed channels would not respond

    The coupling of dynamics in coupled map lattices

    Get PDF
    We investigate the coupling of dynamics in coupled map lattices (CMLs) which is not only related to coupled parameter, but also the asynchronization among different mean fields in the lattices. Computer simulations show that the optimal coupling among mean fields can be found from the maximum coupling of dynamics in various CMLs. As a consequence, the application areas of coupled systems may be broadened due to the better understanding of their dynamics
    corecore