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Optimal Intracellular Calcium Signaling
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In many cell types, calcium is released from internal stores through calcium release channels upon
external stimulation (e.g., pressure or receptor binding). These channels are clustered with a typical
cluster size of about 20 channels, generating stochastic calcium puffs. We find that the clustering of the
release channels in small clusters increases the sensitivity of the calcium response, allowing for coherent
calcium responses at signals to which homogeneously distributed channels would not respond.
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Many important cellular functions are regulated by intra-
cellular and intercellular Ca21 signals. They are involved
in the insulin production of pancreatic b cells [1], in the
enzyme secretion in liver cells (for a review, see, e.g., [2]),
and for the early response to injury of brain tissue [3] and
corneal epithelia [4]. Recent new insights into the bio-
physical mechanism of intracellular Ca21 release have re-
vealed that the actual release sites are discrete and as small
as about 100 nm indicating that mesoscopic methods are
necessary for realistic models of Ca21 release. Conse-
quences of the discreteness of the release clusters for Ca21

wave formation have been explored in [5] and [6]. In this
Letter, we show that the clustering of the release channels
can resonantly enhance the sensitivity of the calcium sig-
naling pathway by exploiting internal fluctuations.

Most of the Ca21 that constitutes the signal is released
from intracellular stores such as the endoplasmic reticu-
lum (ER) into the intracellular space through the Inosi-
tol 1,4,5-Trisphosphate �IP3� receptor. The IP3 receptor
�IP3R� is modeled [7] by three identical subunits that each
have three binding sites: one for the messenger molecule
IP3 (m gate), one activating site (n gate) for Ca21, and
one inactivating site (h gate) for Ca21. In order for a sub-
unit to be conducting Ca21, only the IP3 and the activating
Ca21 binding site need to be occupied. The entire IP3R
is conducting if three subunits are conducting. The Ca21

binding site invokes an autocatalytic mechanism of Ca21

release (Ca21 induced Ca21 release) giving rise to a rapidly
increasing intracellular Ca21 concentration if the concen-
tration of IP3 exceeds a certain threshold. When the inacti-
vation Ca21 binding sites become occupied and the IP3Rs
close, the Ca21 pumps remove Ca21 from the intracellular
space, which is necessary since elevated concentrations of
Ca21 are toxic for the cell. Once the Ca21 concentration is
low and IP3 is present in sufficient concentration, calcium
induced calcium release will rapidly increase intracellular
calcium levels giving rise to oscillatory calcium signals.
The oscillatory nature of the Ca21 signals suggests that
the primary information content of the Ca21 signals is their
frequency [8]. In previous work it has been reported that
globally IP3-mediated Ca21 signals can be devolved into
localized Ca21 release events due to clustered distribution
of IP3Rs [9] with only a few tens IP3Rs per cluster and a
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size of about 100 nm, indicating that thermal open-close
transitions of single IP3Rs are essential. Observations of
signals of differing magnitudes first suggested a hierarchy
of calcium signaling events, with smaller blips represent-
ing fundamental events involving opening of single IP3R
and the larger sparks or puffs being elementary events re-
sulting from the opening of small groups of IP3Rs [9,10].
Improved spatial and temporal resolution recordings, how-
ever, have revealed that there is not a clear distinction
between fundamental and elementary events [9,11]. It is
suggested that the localized calcium release varies in a con-
tinuous fashion due to stochastic variation in both numbers
of channels recruited and durations of channel openings.

In this Letter we focus on the Ca21 release from a single
cluster of IP3Rs which can be considered the fundamen-
tal biophysical process in generating the Ca21 signal. We
are particularly interested in the periodicity with which
the cluster of IP3Rs releases Ca21 since this periodicity
constitutes the actual Ca21 signal. The key result of this
Letter is that there exists an optimal number of IP3Rs con-
stituting a cluster at which the periodicity of the stochas-
tic Ca21 signal is maximized. Our study is based on the
Li-Rinzel model [12], a two-variable simplification of the
De Young–Keizer model [7] where the fast variables m, n
have been replaced by their quasiequilibrium values m`

and n`. According to this model, the calcium flux from
the ER to the intracellular space is driven by the Ca21 gra-
dient; i.e.,

d�Ca21�
dt

� 2ICh 2 IP 2 IL , (1)

dh
dt

� ah�1 2 h� 2 bhh , (2)

with

ICh � c1y1m3
`n3

`h3��Ca21� 2 �Ca21�ER� , (3)

IP �
y3�Ca21�2

k2
3 1 �Ca21�2

, (4)

IL � c1y2��Ca21� 2 �Ca21�ER� . (5)

Here, �Ca21� denotes the intracellular Ca21 concentra-
tion, �Ca21�ER the Ca21 concentration in the ER, and
© 2002 The American Physical Society 068102-1



VOLUME 88, NUMBER 6 P H Y S I C A L R E V I E W L E T T E R S 11 FEBRUARY 2002
h a slow inactivation variable. ICh denotes Ca21 efflux
from intracellular stores through IP3R channels, IP the ATP
(Adenosine Triphosphate) dependent Ca21 flux from the
intracellular space back to the stores, and IL represents the
leak flux. The slow Ca21 inactivation process depends on
both the concentration of IP3 and Ca21 via the rate con-
stants

ah � a2d2��IP3� 1 d1����IP3� 1 d3�, bh � a2�Ca21� .

(6)

The other parameters are m` � �IP3����IP3� 1 d1�, n` �
�Ca21����Ca21� 1 d5�, c1 � 0.185, y1 � 6 s21, y2 �
0.11 s21, y3 � 0.9 mM s21, k3 � 0.1 mM, d1 �
0.13 mM, d2 � 1.049 mM, d3 � 0.9434 mM, d5 �
0.082 34 mM, and a2 � 0.2 mM21 s21. The total amount
of Ca21 is conserved via the Ca21 concentration in ER
with �Ca21�ER � �c0 2 �Ca21���c1 with c0 � 2.0 mM.
The concentration of IP3 denoted by �IP3� is a control
parameter.

The form of Eq. (2) suggests that the inactivation pro-
cess for each IP3R can be modeled as a stochastic pro-
cess where h � 1 describes the open IP3R and h � 0
describes the closed IP3R (i.e., no calcium current through
the IP3R)—constituting the stochastic Li-Rinzel model.
The power three of h in Eq. (1) indicates the three sub-
units of the IP3R and thus three inactivation h gates. For
each inactivation gate h we assume a two-state Markov
process with the unbinding (opening) rate of ah and the
binding (closing) rate bh. The IP3R is h-open if all three
h sites are unbound. The Ca21 flux through the IP3R in
the kinetic model is then given by the modified form of
Eq. (3):

ICh � c1y1m3
`n3

`

Nh-open

N
��Ca21� 2 �Ca21�ER� , (7)

where N and Nh-open indicate the total number of IP3Rs
and the number of h-open receptors in the cluster, respec-
068102-2
tively. Equations (1)–(6) represent the deterministic limit
of the stochastic scheme with Eqs. (1),(4)–(7) for a large
number N of channels. The release of Ca21 in the sto-
chastic Li-Rinzel model is a collective event of a number
of globally coupled channels (via the common Ca21 con-
centrations) with stochastic opening and closing dynamics.

Several methods to simulate such a kinetic scheme
have been put forward (see, e.g., Ref. [13]). Here we
simulate explicitly each gate by the two-state Markov
process with opening and closing rates ah and bh,
respectively [14]. The differential equation (1) together
with the Markov scheme for the h gates is iterated using
an explicit first order scheme with a time step of 0.01 s,
which is small against the time constant of the h gates
th � 1��ah 1 bh� . 3 s for �Ca21� , 1.0 mM and
�IP3� , 1.0 mM and the much longer time scales in
Eq. (1).

In the deterministic limit (i.e., N ! `), the two-variable
Li-Rinzel model has one stable fixed point for �IP3� ,
0.354 mM and �IP3� . 0.642 mM. At �IP3� � 0.354 mM
and �IP3� � 0.642 mM Hopf bifurcations occur so that
�Ca21� is oscillating for 0.354 mM , �IP3� , 0.642 mM
(Fig. 1a). Under normal conditions �IP3� is below the
critical value 0.354 mM and the deterministic model
with a fixed point does not permit calcium signaling. In
Fig. 1b, traces of a Ca21 signal released from a cluster
with 20 IP3Rs are shown for three values of �IP3� in the
three deterministically distinguished regimes I, II, III
(see Fig. 1a). The Ca21 signals consists of stochastic
sequences of Ca21 release events (calcium puffs) in all
three regimes (I, II, III) with a continuum of amplitudes
and durations. The regimes I, II, and III are not well
distinguishable for these small clusters. Most impor-
tantly for the purpose of this Letter, the Ca21 puffs
for �IP3� , 0.354 mM constitute a Ca21 signal with a
frequency content. To determine the degree of periodicity
of the Ca21 released from a cluster, we compute the
normalized power spectrum
Ss�v� �
1
T

j
RT

0 ��Ca21� �t� 2 ��Ca21��	 exp�22pivt� dtj
p

���Ca21� 2 ��Ca21���2�
, (8)
where the length of the observation interval T is 5000 s
for all data presented in this Letter. To reduce statisti-
cal fluctuations due to the finite time interval of record-
ing, we divide the frequency axes into bins and average
the power spectrum S�v� in each bin over 300 runs. In
Fig. 2, we show the normalized power spectra S�v� at vari-
ous sizes N of the release cluster. For very small clusters
(e.g., N � 2 in Fig. 2a) and very large clusters (e.g., N �
10 000 in Fig. 2c), the power spectrum does not exhibit
a peak and thus the release of Ca21 is dominated by sto-
chastic events. In between, however, a peak in the power
spectrum (Fig. 2b) indicates periodicity in calcium release.
The strength of the peak is characterized by the elevation
of the peak DS which is shown in Figs. 3a and 3b as a
function of the size of the cluster N for �IP3� � 0.25 mM
and 0.3 mM, respectively. For �IP3� � 0.25 mM, the ele-
vation of the power spectrum goes through a maximum
at N 
 20, while at �IP3� � 0.3 mM the maximum is at
about N � 150. Typical recorded values of �IP3� range
between 0.15 0.25 mM. In this context it is interesting
to note that the coherence for �IP3� � 0.25 mM peaks at
N � 20 which is considered a realistic cluster size (see
also [15]).

To summarize, the overall coherence of the Ca21 signal
exhibits a maximum at a cluster size that depends on the
concentration of IP3. For IP3 concentrations closer to the
Hopf bifurcation the maximum coherence is achieved for
larger clusters of IP3Rs and vice versa (compare Figs. 3a
and 3b). We now connect these observed phenomena with
the coherence resonance phenomenon [16]. Here, mod-
els of excitable dynamics such as the Fitzhough-Nagumo
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FIG. 1. The bifurcation diagram of the deterministic Li-Rinzel
model (a) and calcium signals generated by a cluster of
20 IP3Rs for different �IP3� (b).

model are driven externally with noise. If the system is
tuned close to the Hopf bifurcation, the resulting train of
action potentials exhibits a strong periodicity if the noise
strength is within a finite range of values. For Ca21 re-
lease of clustered IP3Rs, the noise is internal and deter-
mined by the size of the release cluster. The internal noise

FIG. 2. Power spectra S�v� of the Ca21 signal released by
clusters of (a) N � 2, (b) N � 150, and (c) N � 10 000 IP3Rs
at �IP3� � 0.30 mM.
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FIG. 3. The elevation of the power spectrum DS as a function
of N at �IP3� � 0.25 mM (a) and �IP3� � 0.3 mM (b). Results
obtained with the fully stochastic model (solid squares) are com-
pared with results obtained from the approximative Langevin
model (solid circles).

strength characterized by the variance of the Ca21 signal
is shown as a function of the size of the release cluster for
�IP3� � 0.3 mM in Fig. 4a. In Fig. 4b, the coherence of
the Ca21 release is shown as a function of the internal noise
strength. The figure shows a peak, consistent with coher-
ence resonance but with internal noise. Thus coherence
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FIG. 4. The variance s of �Ca21� is plotted in (a) as a function
of the cluster size. In (b) the coherence of the calcium signal
DS is shown as a function of s; fully stochastic model (solid
squares) and Langevin model (solid circles).
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resonance is an intrinsic feature of the basic biophysical
calcium release mechanism of a living cell.

The stochastic method used so far is conceptually simple
and very accurate but inefficient. For whole-cell or tissue
models, with millions of release clusters, computational
efficiency is paramount. In the following we discuss un-
der what conditions the stochastic method can be approxi-
mated by one single Langevin equation for the fraction of
open inactivation gates of one entire cluster. Since the time
scales in the dynamic equation for �Ca21� are the slowest,
we consider the gate dynamics with constant �Ca21� dur-
ing one time step of iteration (0.01 sec). For each gate
�i � 1, 2, 3� we can write down a master equation for the
number ni of IP3Rs with open gate i [17]:

�P�ni, t� � �N 2 ni 1 1�ahP�ni 2 1, t�

1 �ni 1 1�bhP�ni 1 1, t�

2 �nibh 1 �N 2 ni�ah�P�ni , t� . (9)

For a large number N , this master equation can be approxi-
mated by a Fokker-Planck equation [18] which in turn is
equivalent to the Langevin equations for the fraction of
activated sites hi � ni�N [17,19]:

dhi

dt
� ah�1 2 hi� 2 bhhi 1 Ghi �t� , (10)

where Ghi �t� are zero mean, uncorrelated, Gaussian white-
noise sources with

�Ghi �t�Ghj �t
0�� �

ah�1 2 hi� 1 bhhi

N
d�t 2 t0�dij .

(11)

Since hi have to be bound between 0 and 1, we disregard an
iteration step that leads to a hi value outside this interval.
The stochastic equation for �Ca21� flux through the IP3R
is given by

ICh � c1y1m3
`n3

`h1h2h3��Ca21� 2 �Ca21�ER� , (12)

which replaces the �Ca21� flux through the IP3R in Eq. (1).
Instead of solving the three independent Langevin equa-
tions for hi one can solve only one Langevin equation of
the type in Eq. (10) (say with variable h) and then sub-
stitute h1h2h3 in Eq. (12) by h3. The error for the mean
value ��Ca21�� due to this approximation at N � 15 is less
than 5%, but the gain in computational speed is a factor
of 3. In Figs. 3 and 4 we compare results obtained from
the single-Langevin equation approach with those obtained
from fully kinetic simulations. The Langevin approach
produces accurate results at large N (for which it is de-
signed) but yields only qualitative agreement for realistic
cluster sizes of N 
 20.

In conclusion, we have studied a simple model for
calcium release from intracellular pools into the cytosol
through clustered IP3R channels. The small size of the re-
lease clusters causes the calcium release to be of stochastic
nature. We have studied the coherence of the stochastic
calcium signal as a function of the cluster size. At low
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levels of the signaling molecule IP3 (normal physiologic
condition), the coherence assumes a maximum at a certain
size of the cluster, indicating optimal signaling. This
calcium signal could be used for signaling and regulating
other cell functions at a level of �IP3� at which the deter-
ministic models do not permit signaling. Thus it is the
clustering of the calcium release channels that facilitates
calcium signaling at low levels of �IP3� usually present
in weakly stimulated systems (e.g., by a few molecules
of agonist binding, weak mechanical pressure). We have
shown that this biophysical phenomenon is a form of
coherence resonance [16], where the noise strength is
determined by the size of the release cluster.

This material is based upon work supported by the Na-
tional Science Foundation under Grant No. IBN-0078055.
We have greatly benefited from discussions with Martin
Falcke.
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