4,259 research outputs found

    Coalescing binary systems of compact objects: Dynamics of angular momenta

    Get PDF
    The end state of a coalescing binary of compact objects depends strongly on the final total mass M and angular momentum J. Since gravitational radiation emission causes a slow evolution of the binary system through quasi-circular orbits down to the innermost stable one, in this paper we examine the corresponding behavior of the ratio J/M^2 which must be less than 1(G/c) or about 0.7(G/c) for the formation of a black hole or a neutron star respectively. The results show cases for which, at the end of the inspiral phase, the conditions for black hole or neutron star formation are not satisfied. The inclusion of spin effects leads us to a study of precession equations valid also for the calculation of gravitational waveforms.Comment: 22 pages, AASTeX and 13 figures in PostScrip

    Testing the Color Charge and Mass Dependence of Parton Energy Loss with Heavy-to-light Ratios at RHIC and LHC

    Full text link
    The ratio of nuclear modification factors of high-pT heavy-flavored mesons to light-flavored hadrons (``heavy-to-light ratio'') in nucleus-nucleus collisions tests the partonic mechanism expected to underlie jet quenching. Heavy-to-light ratios are mainly sensitive to the mass and color-charge dependences of medium-induced parton energy loss. Here, we assess the potential for identifying these two effects in D and B meson production at RHIC and at the LHC. To this end, we supplement the perturbative QCD factorized formalism for leading hadron production with radiative parton energy loss. For D meson spectra at high but experimentally accessible transverse momentum (10 < pT < 20 GeV) in Pb-Pb collisions at the LHC, we find that charm quarks behave essentially like light quarks. However, since light-flavored hadron yields are dominated by gluon parents, the heavy-to-light ratio of D mesons is a sensitive probe of the color charge dependence of parton energy loss. In contrast, due to the larger b quark mass, the medium modification of B mesons in the same kinematical regime provides a sensitive test of the mass dependence of parton energy loss. At RHIC energies, the strategies for identifying and disentangling the color charge and mass dependence of parton energy loss are more involved because of the smaller kinematical range accessible. We argue that at RHIC, the kinematical regime best suited for such an analysis of D mesons is 7 < pT < 12 GeV, whereas the study of lower transverse momenta is further complicated due to the known dominant contribution of additional, particle species dependent, non-perturbative effects.Comment: 21 pages RevTex, 9 Figure

    Weak boson production measured in PbPb and pp collisions by CMS

    Full text link
    The unprecedented center-of-mass energy available at the LHC offers unique opportunities for studying the properties of the strongly-interacting QCD matter created in PbPb collisions at extreme temperatures and very low parton momentum fractions. Electroweak boson production is an important benchmark process at hadron colliders. Precise measurements of Z production in heavy-ion collisions can help to constrain nuclear PDFs as well as serve as a standard candle of the initial state in PbPb collisions at the LHC energies. The inclusive and differential measurements of the Z boson yield in the muon decay channel will be presented, establishing that no modification is observed with respect to next-to-leading order pQCD calculations, scaled by the number of incoherent nucleon-nucleon collisions. The status of the Z measurement in the electron decay channel, as well as the first observation of W \rightarrow \mu {\nu} in heavy ion collisions will be given. The heavy-ion results will be presented in the context of those obtained in pp collisions with the CMS detector.Comment: Quark Matter 2011 conference proceeding

    Precursor Plerionic Activity and High Energy Gamma-Ray Emission in the Supranova Model of Gamma-Ray Bursts

    Get PDF
    The supranova model of gamma-ray bursts (GRBs), in which the GRB event is preceded by a supernova (SN) explosion by a few months to years, has recently gained support from Fe line detections in X-ray afterglows. A crucial ingredient of this model yet to be studied is the fast-rotating pulsar that should be active during the time interval between the SN and the GRB, driving a powerful wind and a luminous plerionic nebula. We discuss some observational consequences of this precursor plerion, which should provide important tests for the supranova model: 1) the fragmentation of the outlying SN ejecta material by the plerion and its implications for Fe line emission; and 2) the effect of inverse Compton cooling and emission in the GRB external shock due to the plerion radiation field. The plerion-induced inverse Compton emission can dominate in the GeV-TeV energy range during the afterglow, being detectable by GLAST from redshifts z≲1.5z \lesssim 1.5 and distinguishable from self-Compton emission by its spectrum and light curve. The prospects for direct detection and identification of the precursor plerion emission are also briefly considered.Comment: ApJ vol.583, in pres

    Laboratory Study on the Use of Tire Shreds and Rubber-Sand in Backfilled and Reinforced Soil Applications

    Get PDF
    Millions of scrap tires are discarded annually in the United States, the bulk of which are currently landfilled or stockpiled. This consumes valuable landfill space, or, if improperly disposed, creates a fire hazard and provides a prolific breeding ground for rats and mosquitoes. The use of tire shreds as lightweight fill material can sharply reduce the tire disposal problem. The present study, based on laboratory testing and numerical modeling examines the feasibility of incorporating tire shreds and rubber-sand mixtures as lightweight geomaterial in embankments and backfills. The growing interest in utilizing waste materials in civil engineering applications has opened the possibility of using reinforced soil structures wit non-conventional backfills. The laboratory testing program of the present study includes the determination of volumetric behavior of rubber-sand mixtures with geogrids and geotextiles through pull-out and direct shear tests. The test results have been used to perform numerical modeling of tire shred and rubber-sand backfills in walls. It has been found that the use of tire shreds and rubber-sand (with a tire shred to mix ratio about 40%) in highway construction offers technical, economic, and environmental benefits. The salient benefits of using tire shreds and rubber-sand include reduced weight of fill, adequate stability, low settlements, good drainage (avoiding the development of pore water pressure during loading), separation of underlying weak or problem soils from subbase or base materials conservation of energy and natural resources, and usage of large quantities of local waste tires, which would have a positive impact on the environment

    Induced scalarization in boson stars and scalar gravitational radiation

    Get PDF
    The dynamical evolution of boson stars in scalar-tensor theories of gravity is considered in the physical (Jordan) frame. We focus on the study of spontaneous and induced scalarization, for which we take as initial data configurations on the well-known S-branch of a single boson star in general relativity. We show that during the scalarization process a strong emission of scalar radiation occurs. The new stable configurations (S-branch) of a single boson star within a particular scalar-tensor theory are also presented.Comment: 18 pages, 11 figures. Minor changes to match the published versio

    Dynamical evolution of unstable self-gravitating scalar solitons

    Full text link
    Recently, static and spherically symmetric configurations of globally regular self-gravitating scalar solitons were found. These configurations are unstable with respect to radial linear perturbations. In this paper we study the dynamical evolution of such configurations and show that, depending on the sign of the initial perturbation, the solitons either collapse to a Schwarzschild black hole or else ``explode'' into an outward moving domain wall.Comment: 11 pages, 16 figures, submitted to Phys. Rev.

    PyPWA: A Software Toolkit for Parameter Optimization and Amplitude Analysis

    Full text link
    PyPWA is a toolkit designed to optimize parametric models describing data and generate simulated distributions according to a model. Its software has been written within the python ecosystem with the goal of performing Amplitude or Partial Wave Analysis (PWA) in nuclear and particle physics experiments. We briefly describe the general features of amplitude analysis and the PyPWA software design and usage. We provide benchmarks of the scaling and an example of its application
    • …
    corecore