5,062 research outputs found

    Analysis of water absorbency into knitted spacer structures

    Get PDF
    The absorbency properties of knitted structures are very important in designing garments that both remove liquid sweat from the skin and provide tactile and sensorial comfort to the wearer. Water absorbency by knitted spacer structures was experimentally investigated using a gravimetric absorbency tester to record absorbency rate, total absorbency, and time taken to saturate the structure. The geometry of spacer structures was analyzed and a model created to define the capillary characteristic in the spacer yarn. Absorbency into the spacer structures was modeled using the fabric parameters, the capillary radius, and the properties of water. Experimental and theoretical results were compared to validate the models

    Sand Area Changes in the Emirate of Abu Dhabi, United Arab Emirates between 1992 and 2013 Using a Time Series of Satellite Imagery

    Get PDF
    Sand encroachment is a major problem that affects arid countries and has severe consequences on their infrastructure. It poses a threat to the environment, roads, habitats, farms and plantations thus requiring human intervention for the removal of the encroaching sands. Tracking sand dune movement and sand changes in such regions and studying their trajectories in time is very important. It allows governments to plan better counter measures to prevent their occurrence and minimize their danger. The Emirate of Abu Dhabi underwent significant socioeconomic changes during the study period, which resulted in an unprecedented boom in population growth, reflected by increase demand for new infrastructures and urban development. Sand movements are accelerated by anthropogenic activities, as witnessed through their encroachment onto farms and interstate roadways. In this study, we used remote sensing data to map sand movement and its effect on urban and agricultural areas. Using six individual Landsat scenes to create a mosaic for each of the study dates of 1992, 2002, and 2013, we created land cover thematic maps using supervised classification. The resulted maps were checked and evaluated using higher resolution imagery, namely SPOT, IKONOS, and RapidEye. They were then imported into GIS where change analysis was run using the post classification procedure. Change analysis results indicated an increase in sand cover, between 1992 and 2013, by 1.26%. The using of Landsat imagery to track changes in land cover features over a large region and across time proved to be very useful for better understanding of changes, their trajectories, and their causes and impacts

    Experimental Demonstration of Localized Excess Protons at a Water-Membrane Interface

    Get PDF
    The widespread Mitchellian proton motive force equation has recently been revised with the proton-electrostatics localization hypothesis, which, for the first time, successfully elucidates the 30-year longstanding energetic conundrum of ATP synthesis in alkalophilic bacteria. To demonstrate the fundamental behavior of localized protons in a pure water-membrane-water system in relation to the newly derived pmf equation, excess protons and excess hydroxyl anions were generated by utilizing an open-circuit water-electrolysis system and their distributions were tested using a proton-sensing aluminum membrane. The proton-sensing film placed at the membrane-water interface displayed dramatic localized proton activity while that placed into the bulk water phase showed no excess proton activity during the entire experiment. These observations clearly match with the prediction from the proton-electrostatics localization hypothesis that excess protons do not stay in water bulk phase; they localize at the water-membrane interface in a manner similar to the behavior of excess electrons in a conductor. This finding has significance not only in the science of bioenergetics but also in the fundamental understanding for the importance of water to life in serving as a proton conductor for energy transduction in living organisms

    The association of preoperative cardiac stress testing with 30-day death and myocardial infarction among patients undergoing kidney transplantation

    Get PDF
    BACKGROUND:Although periodic cardiac stress testing is commonly used to screen patients on the waiting list for kidney transplantation for ischemic heart disease, there is little evidence to support this practice. We hypothesized that cardiac stress testing in the 18 months prior to kidney transplantation would not reduce postoperative death, total myocardial infarction (MI) or fatal MI. METHODS:Using the United States Renal Data System, we identified ESRD patients ≥40 years old with primary Medicare insurance who received their first kidney transplant between 7/1/2006 and 11/31/2013. Propensity matching created a 1:1 matched sample of patients with and without stress testing in the 18 months prior to kidney transplantation. The outcomes of interest were death, total (fatal and nonfatal) MI or fatal MI within 30 days of kidney transplantation. RESULTS:In the propensity-matched cohort of 17,304 patients, death within 30 days occurred in 72 of 8,652 (0.83%) patients who underwent stress testing and in 65 of 8,652 (0.75%) patients who did not (OR 1.07; 95% CI: 0.79-1.45; P = 0.66). MI within 30 days occurred in 339 (3.9%) patients who had a stress test and in 333 (3.8%) patients who did not (OR 1.03; 95% CI: 0.89-1.21; P = 0.68). Fatal MI occurred in 17 (0.20%) patients who underwent stress testing and 15 (0.17%) patients who did not (OR 0.97; 95% CI: 0.71-1.32; P = 0.84). CONCLUSION:Stress testing in the 18 months prior to kidney transplantation is not associated with a reduction in death, total MI or fatal MI within 30 days of kidney transplantation

    Stacked optical antennas for plasmon propagation in a 5 nm-confined cavity

    Get PDF
    The sub-wavelength concentration and propagation of electromagnetic energy are two complementary aspects of plasmonics that are not necessarily co-present in a single nanosystem. Here we exploit the strong nanofocusing properties of stacked optical antennas in order to highly concentrate the electromagnetic energy into a 5 nm metal-insulator-metal (MIM) cavity and convert free radiation into guided modes. The proposed nano-architecture combines the concentration properties of optical nanoantennas with the propagation capability of MIM systems, paving the way to highly miniaturized on-chip plasmonic waveguiding
    corecore