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4
Hedonic Imputation versus Time 
Dummy Hedonic Indexes

W. Erwin Diewert, Saeed Heravi, and Mick Silver

4.1   Introduction

The purpose of this chapter is to compare two main and quite distinct 
approaches to the measurement of  hedonic price indexes: time dummy 
hedonic indexes and hedonic imputation indexes. Both approaches not only 
correct price changes for changes in the quality of items purchased, but also 
allow the indexes to incorporate matched and unmatched models. They 
provide a means by which price change can be measured in product markets 
where there is a rapid turnover of differentiated models. However, they can 
yield quite different results. This chapter provides a formal exposition of 
the factors underlying such differences and the implications for choice of 
method. We consider both weighted and unweighted hedonic regression 
models. Unweighted hedonic regression models will be considered in sec-
tions 4.2 and 4.3. These models are of course useful in a sampling context 
where information on the quantity or value of sales (or purchases) is unavail-
able. Weighted hedonic regression models are considered in sections 4.4 and 
4.5. The weighting is chosen so that if  we are actually in a matched model 
situation for the two periods being considered, then the resulting hedonic 
regression measures of  price change resemble standard superlative index 
number formulae.

The standard way price changes are measured by national statistical offices 
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is through the use of a matched models methodology. Using this methodol-
ogy, the details and prices of a representative selection of items are collected 
in a base reference period and their matched prices collected in successive 
periods so that the prices of “like” are compared with “like.” However, if  
there is a rapid turnover of available models, then the sample of product 
prices used to measure price changes becomes unrepresentative of the cat-
egory as a whole. This is as a result of both new unmatched models being 
introduced (but not included in the sample), and older unmatched models 
being retired (and thus dropping out of the sample). Hedonic indexes use 
matched and unmatched models and in doing so put an end to the matched 
models sample selection bias.1 The need for hedonic indexes can be seen 
in the context of the need to reduce bias in the measurement of the U.S. 
Consumer Price Index (CPI), which has been the subject of  three major 
reports: the Stigler (1961) Committee Report, the Boskin (1996) Commis-
sion Report, and the Schultze and Mackie (2002) Committee on National 
Statistics Panel Report. Each found the inability to properly remove the 
effect on price changes of changes in quality to be a major source of bias. 
Hedonic regressions were considered to be the most promising approach to 
control for such quality changes, though the Schultze panel cautioned for 
the need for further research on methodology:

Hedonic techniques currently offer the most promising approach for 
explicitly adjusting observed prices to account for changing product qual-
ity. But our analysis suggests that there are still substantial unresolved 
econometric, data, and other measurement issues that need further atten-
tion. (Schultze and Mackie 2002, 6)

At fi rst sight the two approaches to hedonic indexes appear quite similar. 
Both rely on hedonic regression equations to remove the effects on price of 
quality changes. They can also incorporate a range of weighting systems and 
can be formulated as a geometric, harmonic, or arithmetic aggregator func-
tion of quality- adjusted prices, and as chained or direct, fi xed- base compari-
sons. Yet they can give quite different results, even when using comparable 
weights, functional forms, and the same method of making comparisons over 
periods. This is due to the fact that they work on different averaging prin-
ciples. The dummy variable method constrains hedonic regression param-
eters to be the same over time. A hedonic imputation index conversely allows 
the quality adjustment parameters to change in each period and undertakes 
two sets of  quality adjustments to prices for each comparison of  prices 
between two periods and then averages over these two comparisons.

There has been some valuable research on the two approaches2 though to 

1. See for example, Cole et al. (1986), Silver and Heravi (2003, 2005), Pakes (2003), and 
Triplett (2004).

2. See Berndt, Griliches, and Rappaport (1995), Berndt and Rappaport (2001), Diewert 
(2003b), Silver and Heravi (2003), Pakes (2003), de Haan (2003, 2004), and Triplett (2004).



Hedonic Imputation versus Time Dummy Hedonic Indexes    163

the authors’ knowledge no formal analysis has been presented, with a few 
exceptions,3 of the factors governing the differences between the approaches. 
Berndt and Rappaport (2001) and Pakes (2003) have highlighted the fact 
that the two approaches can give different results and both of these papers 
advise the use of hedonic imputation indexes when parameters are unstable, 
a proposal that will be considered in sections 4.5 and 4.7.

Section 4.2 looks at a simple unweighted two- period time dummy variable 
hedonic regression model. We focus on the estimation of the time dummy 
estimate of the change in log prices going from period 0 to 1 but we represent 
this measure of overall log price change as a difference in log price levels 
for the two periods. In section 4.3, we take the same unweighted model but 
run separate hedonic regressions for both periods and use these regression 
parameters to form two imputed measures of  constant quality log price 
change. These two measures are then averaged to obtain an overall imputed 
measure of log price change.4 An exact expression for the difference in con-
stant quality log price change between the time dummy and imputation 
measures is also developed in section 4.3. It is found that in order for these 
two overall measures to differ, we require the following.

•  Differences in the two variance covariance matrices pertaining to the 
model characteristics in each period

•  Differences in average amounts of model characteristics present in each 
period5

•  Differences in estimated hedonic coefficients for the two separate he-
donic regressions

The analysis in sections 4.2 and 4.3 is repeated in the weighted context 
in sections 4.4 and 4.5. Section 4.6 provides an empirical study for desktop 
PCs and section 4.7 concludes by discussing the issue of choice between the 
approaches in light of the theoretical and empirical fi ndings.

Appendix A considers two alternative methodologies for constructing 
measures of overall log price change using the hedonic imputation meth-
odology where two separate hedonic regressions are estimated for the two 
periods under consideration. The fi rst methodological approach is due to 

3. The fi rst exception is Silver and Heravi (2007a), who considered the case of one charac-
teristic and used a rather different methodological approach based on the bias generated by 
omitted variables in regression models. The second exception is the comment by Jan de Haan, 
which follows this chapter, who developed an expression for the difference based on a frame-
work outlined in Triplett and MacDonald (1977). The points made in Haan’s commentary are 
developed more fully in de Haan (2007).

4. An alternative interpretation of this measure of price change is derived in appendix B.
5. If  the models are exactly the same in the two periods being considered, then this set of 

differences will be zero and the characteristics variance covariance matrices will also be identi-
cal. Hence the hedonic time dummy and hedonic imputation estimates of price change will be 
identical under these conditions. Thus the two methods will give rise to substantial confl icting 
estimates only in markets where there are many new models being introduced into the market-
place or many disappearing models (or both).
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Court (1939, 108) where individual prices in each period are quality adjusted 
using their characteristics vectors and the characteristics prices obtained 
from one of  the two hedonic regressions and then the resulting quality-
 adjusted prices are compared across the two periods. Finally, the resulting 
two measures of  quality- adjusted overall log price change are averaged. 
In the second methodological approach to hedonic imputation indexes, 
due originally to Griliches (1967), the mean vector of characteristics that 
pertains to the models observed in period 0 is calculated and then the dis-
tance between the two hedonic regressions at this mean characteristics point 
is calculated, which generates a fi rst measure of overall price change (the 
Laspeyres measure of log price change). The Paasche measure of overall 
log price change is calculated using the mean vector of characteristics that 
pertains to the models observed in period 1 and then the distance between 
the two hedonic regressions at this mean characteristics point is calculated. 
Finally the two estimates of overall log price change are averaged. Appen-
dix A shows that these two methodological approaches to hedonic imputa-
tion indexes lead to exactly the same numerical estimates of overall price 
change.

It is often thought that a major advantage of the time dummy variable 
method for obtaining measures of overall log price change is that a stan-
dard error for the log price change is obtained. In appendix B, a method 
for obtaining approximate standard errors for the Laspeyres and Paasche 
hedonic imputation measures of log price change is derived.

4.2   Unweighted Time Dummy Hedonic Regressions

We begin by considering a simple unweighted two- period time dummy 
variable hedonic regression model. We assume that there are N(t) observa-
tions on the prices, pt

n, of  various models n in period t for t � 0,1. Obser-
vation n in period t has a vector of K characteristics associated with it, say, 
[zt

n1, z
t
n2, . . . , z

t
nK] for t � 0,1 and n � 1, 2, . . . , N(t). The time dummy regres-

sion model has the following form:

(1)  ln pt
n � yt

n � �t � ∑
k

K

�1

zt
nk�k � �t

n;    t � 0, 1 ; n � 1, 2, . . . , N(t)

where the εn
t are independently distributed normal variables with mean 0 and 

constant variance and �0, �1, �1, . . . , �K are parameters to be estimated. The 
parameters �0 and �1 are measures of the average level of constant quality 
prices of  the items in period 0 and 1, respectively, and the �1, . . . ,�K are 
quality adjustment factors for the K characteristics; that is, �k is the contribu-
tion to the log price of the product of adding an extra unit of characteristic 
k. Note that we have parameterized the time dummy hedonic regression 
model in a slightly different way to the way it is usually done since we do not 
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have an overall constant term in the regression plus a time dummy variable 
in period 1; instead we have separate constant terms for each period. The 
overall measure of logarithmic price change going from period 0 to period 1 is 
�1 –  �0.

6 Let 1t and 0t be vectors of ones and zeros of dimension N(t), let y0 
and y1 be the N(0) and N(1) dimensional vectors of period 0 and 1 logarithms 
of product prices, let �0 and �1 be the N(0) and N(1) dimensional vectors 
of period 0 and 1 stochastic disturbances and let Z 0 and Z1 be matrices of 
the product characteristics in periods 0 and 1, respectively. Then the model 
defi ned by equation (1) can be written in matrix notation as follows:

(2) y0 � 10�0 � 00�1 � Z0� � �0;

(3) y1 � 01�0 � 11�1 � Z1� � �1.

Let �0
∗, �1

∗, �1
∗, . . . , �K

∗ be the maximum likelihood or least squares estima-
tors for the parameters that appear in equations (2) and (3). Then letting 
e0 and e1 be the vectors of least squares residuals for equations (2) and (3), 
respectively, the following equations will be satisfi ed by the parameter esti-
mates and the data:

(4) y0 � 10�0
∗ � 00�1

∗ � Z0�∗ � e0;

(5) y1 � 01�0
∗ � 11�1

∗ � Z1�∗ � e1.

Let y � [y0T, y1T]T and e � [e0T, e1T]T and defi ne �∗ � [�0
∗, �1

∗, �1
∗, . . . , �K

∗]T. 
Now rewrite equations (4) and (5) as

(6) y � X�∗ � e.

It is well known that the columns of the X matrix are orthogonal to the 
vector e of  least squares residuals; that is, we have

(7) XTe � XT[y � X�∗] � 02�K.

The fi rst two equations in (7) are equivalent to the following two equa-
tions:7

(8) 10
Ty0 � N(0)�∗

0 � 10
TZ0�∗;

(9) 11
Ty1 � N(1)�∗

1 � 11
TZ1�∗.

Equations (8) and (9) can be used to solve for the following period 0 and 
1 constant quality log price levels:

6. Our method of parameterization is equivalent to the standard method for parameterizing 
a time dummy hedonic regression model, which is to have a common constant term for the two 
periods and a time dummy variable for the second period regression.

7. Diewert (2003a, 335; 2003b, 39; 2006) and Silver and Heravi (2005) used this orthogo-
nality method of proof to provide an interpretation of the hedonic time dummy in terms of 
quality- adjusted prices.
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(10) �∗
0 � 

10
Ty0

�
 N(0)

 � 
10

TZ0�∗
�

 N(0)
 � 

10
T(y0 � Z0�∗)
��

 N(0)
;

(11) �∗
1 � 

11
Ty1

�
 N(1)

 � 
11

TZ1�∗
�

 N(1)
 � 

11
T(y1 � Z1�∗)
��

 N(1)
.

Note that 1t
Ty t/ N(t) is the arithmetic average of the log prices in period t 

for t � 0,1. Furthermore, note that 10
TZ0/ N(0) is the arithmetic average of 

the amounts of each characteristic that are present in the period 0 models 
and 11

TZ1/ N(1) is the corresponding arithmetic average amount of each char-
acteristic that is present in the period 1 models. Thus, each �t

∗ is equal to 
the average of the log prices for the models present in period t less a quality 
adjustment consisting of the inner product of the characteristic prices �∗ 
with the average amount of each characteristic across the models that are 
present in period t. Alternatively, the second set of equalities in equations 
(10) and (11) shows that each �t

∗ is equal to the arithmetic average of the 
quality adjusted log prices, y t –  Z t�∗, for the models present in that period. 
In any case, the (unweighted) hedonic time dummy estimate of the change in 
log prices going from period 0 to 1, LPHD, is the following difference in the 
log price levels:8

(12) LPHD � �∗
1 � �∗

0.

For later reference, we work out an expression for the estimated charac-
teristic prices, �∗. Recall equation (6), y � X�∗ � e, which defi ned the N(0) 
� N(1) by 2 � K matrix X. We rewrite X as follows:

(13) X � [V, Z],

where ZT � [Z0T, Z1T] and V is an N(0) � N(1) by 2 matrix that has the fi rst 
column equal to [10

T, 01
T ]T and second column equal to [00

T, 11
T ]T. Now solve 

the least squares minimization problem that corresponds to equation (6) in 
two stages. In the fi rst stage, we condition on � and minimize with respect 
to the components of � � [�0, �1]

T. The resulting conditional least squares 
estimator for � is:

(14) �(�) � (VTV )�1VT(y � Z�).

The second stage minimization problem is the problem of minimizing 
f (�) with respect to the components of � where f is defi ned as follows:

8. This methodology can be traced back to Court (1939, 109– 111) as his hedonic suggestion 
number two. Note also that if  the models are the same in the two periods being considered, 
then N(0) equals N(1) (equals N, say) and Z 0 equals Z1, so that the two characteristics matrices 
are identical and thus �1

∗ –  �0
∗ � 11

T [y1 –  Z1�∗]/ N(1) –  10
T[y0 –  Z 0�∗]/ N(0) � 11

Ty1/ N –  1Ty0/ N, 
which is the arithmetic mean of the period 1 log prices less the arithmetic mean of the period 0 
log prices. Thus under these conditions, there is no need to run a hedonic regression; the usual 
matched- model methodology can be used.
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(15) f (�) � [y � Z� � V�(�)]T[y � Z� � V�(�)]

 � [y � Z� � V(VTV )�1VT(y � Z�)]T

 [y � Z� � V(VTV)�1VT(y � Z�)] using (14)

 � (My � MZ�)T(My � MZ�)

 � (y � Z�)TMTM(y � Z�)

 � (y � Z�)TM(y � Z�)    since M � MT and M2 � M

where the projection matrix M is defi ned as follows:

(16) M � I � V(VTV)�1VT.

A simple way to solve the problem of minimizing f (�) with respect to � is 
to make use of the third equality in equation (15); that is, defi ne the projec-
tions of y and Z onto M as follows:

(17) y∗ � My; Z∗ � MZ.

Using defi nitions (17), it can be seen that

(18) f (�) � (y∗ � Z∗�)T(y∗ � Z∗�).

Thus, the solution to the second stage least squares minimization problem is:

(19) �∗ � (Z∗TZ∗)�1Z∗Ty∗.

Once �∗ has been determined by equation (19), then we can use equations 
(14) or (8) and (9) to determine the least squares estimators for �0

∗ and �∗
1.

Using the defi nition of V, it can be shown that the projection matrix M 
defi ned by (16) is block diagonal, with the two main diagonal blocks M0 and 
M1 defi ned as follows:

(20) M0 � I0 � 
1010

T

�
 N(0)

 ; M1 � I1 � 
1111

T

�
 N(1)

,

where I0 and I1 are identity matrices of dimension N(0) and N(1), respec-
tively. Using (20), we can determine more precisely what the vector y∗ equal 
to My and the matrix Z∗ equal to MZ look like. Let y∗T � [y0∗T, y1∗T] and 
Z∗T � [Z0∗T, Z1∗T]. Then using (20), we have:

(21) yt∗ � yt � 
1t1t

Tyt

�
 N(t)

;    t � 0, 1;

(22) Zt∗ � Zt � 
1t1t

TZt

�
 N(t) ;    t � 0, 1.

Thus, each projected vector yt∗ is equal to the corresponding period t log 
price vector yt less a vector of ones times the average of the log prices for 
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period t, ΣN
n�1

(t)yt
n/ N(t), and each projected matrix Z t∗ is equal to the cor-

responding period t characteristics matrix Z t less a column vector of ones 
times a row vector equal to the average of the characteristics in each model 
for period t, [ΣN

n�1
(t)zt

n1/ N(t), ΣN
n�1

(t)zt
n2/ N(t), . . . , ΣN

n�1
(t)z t

nK/ N(t)]. Thus, yt∗ and Z t∗ 
are simply the corresponding yt and Z t with the period means subtracted 
from each component.

Using the block diagonal structure of M, it can be verifi ed that we have 
the following alternative representation for the least squares characteristics 
prices �∗ defi ned by (19):

(23) �∗ � (Z0∗TZ0∗ � Z1∗TZ1∗)�1(Z0∗Ty0∗ � Z1∗Ty1∗).

We now turn our attention to hedonic imputation indexes.

4.3   Unweighted Hedonic Imputation Indexes

Instead of running one hedonic regression where the same characteris-
tics prices are used to quality adjust prices in each period, we can run two 
entirely separate hedonic regressions with separate characteristics prices, �0 
in period 0 and �1 in period 1. Thus using the same notation as in section 
4.2, our models now are:

(24) y0 � 10	0 � Z0�0 � 
0;

(25) y1 � 11	1 � Z1�1 � 
1,

where 
0 and 
1 are independently distributed normal random variables 
with means zero and constant variance within each period. Let 	∗

0, �1
0∗, . . . , 

�K
0∗ be the maximum likelihood or least squares estimators for the param-

eters that appear in equation (24) and let 	∗
1, �1

1∗, . . . , �K
1∗ be the maximum 

likelihood or least squares estimators for the parameters that appear in equa-
tion (25). Then letting u0 and u1 be the vectors of least squares residuals for 
equations (24) and (25), respectively, the following equations will be satisfi ed 
by the parameter estimates and the data:

(26) y0 � 10	0
∗ � Z0�0∗ � u0;

(27) y1 � 11	1
∗ � Z1�1∗ � u1.

The counterparts to equations (8) and (9) in the present context are:

(28) 10
Ty0 � N(0)	0

∗ � 10
TZ0�0∗;

(29) 11
Ty1 � N(1)	1

∗ � 11
TZ1�1∗.

Equations (28) and (29) lead to the following counterparts to equations (8) 
and (9):

(30) 	0
∗ � 

10
Ty0

�
N(0)

 � 
10

TZ0�0∗
�

N(0)
 � 

10
T(y0 � Z0�0∗)
��

 N(0)
;
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(31) 	1
∗ � 

11
Ty1

�
 N(1)

 � 
11

TZ1�1∗
�

 N(1)
 � 

11
T(y1 � Z1�1∗)
��

 N(1)
.

Recall that the hedonic time dummy estimate of the change in log prices 
going from period 0 to 1, LPHD, was defi ned by (12) as the difference in the 
log price levels, �∗

1 –  �∗
0. In the present context, we cannot simply take the 

difference between 	∗
1 and 	∗

0 as a measure of  constant quality log price 
change between periods 0 and 1, because the quality adjustment parameters, 
�0∗ and �1∗, are different between the two periods. However, we can use the 
period 0 parameters, �0∗, to form estimates of quality- adjusted log prices 
for the models present in period 1 and then take the average of the resulting 
quality- adjusted log prices, which we denote by �∗

1:

(32) �∗
1 � 

11
Ty1

�
 N(1)

 � 
11

TZ1�0∗
�

 N(1)
 � 

11
T(y1 � Z1�0∗)
��

 N(1)
.

Note that the previous estimate of a period 1 log price level is analogous to 
	∗

1, defi ned by equation (31) except that the period 0 hedonic quality adjust-
ment factors, �0∗, are used in equation (32) whereas the period 1 hedonic 
quality adjustment factors, �1∗, were used in equation (31). Since the period 
0 and 1 estimated price levels, 	∗

0 and �∗
1, use the same quality adjustment 

factors �0∗ in order to form constant quality log prices in each period, we 
can take the difference �∗

1 less 	∗
0 as a measure of quality- adjusted log price 

change between periods 0 and 1.9 We call this hedonic imputation measure 
of log price change a Laspeyres type measure of  price change and denote it 
by �∗

L � �∗
1 –  	∗

0. This measure of overall log price change depends asym-
metrically on the characteristics price vector �0∗ that was obtained from the 
period 0 hedonic regression. It can be seen that we can obtain an alternative 
measure of log price change between the periods using the period 1 hedonic 
regression characteristics price vector �1∗. Thus, use the period 1 charac-
teristics price vector, �1∗, to form estimates of quality- adjusted log prices 
for the models present in period 0 and then take the average of the resulting 
quality- adjusted log prices, which we denote by �0

∗:

(33) �0
∗ � 

10
Ty0

�
 N(0)

 � 
10

TZ0�1∗
�

 N(0)
 � 

10
T(y0 � Z0�1∗)
��

 N(0)
.

Note that the previous estimate of  a period 0 log price level is analo-
gous to 	∗

0 defi ned by equation (30) except that the period 1 hedonic quality 
adjustment factors, �1∗, are used in equation (33), whereas the period 0 
hedonic quality adjustment factors, �0∗, were used in equation (30). Since 
the period 0 and 1 estimated price levels, �∗

0 and 	∗
1, use the same quality 

adjustment factors �1∗ in order to form constant quality log prices in each 

9. This basic idea can be traced back to Court (1939, 108) as his hedonic suggestion number 
one. His suggestion was followed up by Griliches (1971a, 59– 60; 1971b, 6) and Triplett and 
McDonald (1977, 144).
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period, we can take the difference 	∗
1 less �∗

0 as a second measure of log price 
change between periods 0 and 1. We call this hedonic imputation measure 
of log price change a Paasche type measure of  price change and denote it by 
�∗

P � 	∗
1 –  �∗

0.
10

Following Griliches (1971b, 7) and Diewert (2003b, 12), it seems pref-
erable to take a symmetric average of the above two estimates of log price 
change over the two periods. We choose the arithmetic mean11 as our sym-
metric average and defi ne the (unweighted) hedonic imputation estimate of 
the change in log prices going from period 0 to 1, LPHI, as follows:12

(34) LPHI � 
1
�
2

�∗
L � 

1
�
2

�∗
P

 � 
1
�
2

(�∗
1 � 	∗

0) � 
1
�
2

(	∗
1 � �∗

0)

 � 
1
�
2 �11

T(y1 � Z1�0∗)
��

 N(1)
 � 

10
T(y0 � Z0�0∗)
��

 N(0)

� 
11

T(y1 � Z1�1∗)
��

 N(1)
 � 

10
T(y0 � Z0�1∗)
��

 N(0) �    using (30)�(33)

 � 11
T� y1 � Z1[(1/2)�0∗ � (1/2)�1∗]
���

 N(1) �  

 � 10
T�y0 � Z0[(1/2)�0∗ � (1/2)�1∗]
���

 N(0) �.

Recall that in the hedonic time dummy method for quality adjusting log 
prices y t for each period t, we used the characteristics quality adjustments 
defi ned by Zt�∗, where �∗ was a constant across periods vector of qual-
ity adjustment factors. Looking at the right- hand side of  (34), it can be 
seen that the hedonic imputation method for quality adjusting log prices in 
each period is similar but now the period t vector of quality adjustments is 
Z t[(1/2)�0∗ � (1/2)�1∗] instead of Z t�∗. Thus for the hedonic imputation 
method of quality adjusting prices, the average of the two separate hedonic 

10. In appendix B we develop a simple method for obtaining approximate standard errors 
for the hedonic imputation Laspeyres and Paasche measures of log price change between the 
two periods.

11. If  we chose to measure price change instead of log price change, then the arithmetic mean 
estimator of log price change converts into a geometric mean of the two measures of level price 
change, exp[�1

∗ –  	0
∗] and exp[	1

∗ –  �0
∗].

12. In appendix A we show that the measure of quality- adjusted change in log prices defi ned 
by equation (34), which followed the methodology due originally to Court (1939, 108), can also 
be interpreted as a measure of the distance between the two hedonic regressions. The prin-
ciples of such measures were discussed in Griliches (1967) and Dhrymes (1971, 111– 12) and 
further developed by Feenstra (1995) and Diewert (2003a, 341– 44). Empirical studies using 
this approach include Berndt, Griliches, and Rappaport (1995), Ioannidis and Silver (1999), 
Berndt and Rappaport (2001, 270), Koskimäki and Vartia (2001) and Silver and Heravi (2003, 
2007b).
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regression estimated quality adjustment factors, (1/2)�0∗ � (1/2)�1∗, re-
places the single regression estimated quality adjustment factor vector �∗ 
that was used in the hedonic time dummy method for quality adjustment.

Note also that if  the models are the same in the two periods being con-
sidered, then N(0) equals N(1) (equals N, say) and Z0 equals Z1, so that the 
two characteristics matrices are identical, then LPHI defi ned by (34) collapses 
to 11

Ty1/ N –  1Ty0/ N, which is the arithmetic mean of the period 1 log prices 
less the arithmetic mean of the period 0 log prices. Thus under these condi-
tions, there is no need to run hedonic regressions; the usual matched- model 
methodology can be used.

Using (12) and (34), we can form the following expression for the difference 
in the overall log price change using the two methods for quality adjust-
ment:

(35) LPHD � LPHI � �
11

TZ1�∗
�

N(1)
 � 

10
TZ0�∗
�

 N(0)
� 

11
TZ1[(1/2)�0∗ � (1/2)�1∗]
���

N(1)
 

 � 
10

TZ0[(1/2)�0∗ � (1/2)�1∗]
���

 N(0)

 � 
11

TZ1[(1/2)�0∗ � (1/2)�1∗ � �∗]
����

 N(1)
 

 � 
10

TZ0[(1/2)�0∗ � (1/2)�1∗ � �∗]
����

 N(0)

 � � 11
TZ1

�
 N(1)

 � 
10

TZ0

�
N(0) �� 1

�
2

�0∗ � 
1
�
2

�1∗ � �∗�.

Thus, the hedonic time dummy and hedonic imputation measures of log 
price change will be identical if  either of  the following two conditions are 
satisfi ed:

(36) 
11

TZ1

�
 N(1)

 � 
10

TZ0

�
 N(0)

;

(37) �∗ � 
1
�
2

�0∗ � 
1
�
2

�1∗.

Condition (36) says that the average amount of each characteristic for 
the models present in period 1 equals the corresponding average amount of 
each characteristic for the models present in period 0. Condition (37) says 
that the time dummy vector of quality adjustment factors, �∗, is equal to 
the arithmetic average of the two separate hedonic regression estimates for 
the quality adjustment factors, (1/2)�0∗ � (1/2)�1∗.

Condition (36) is somewhat unanticipated. It tells us that if  the average 
amount of  characteristics present in the models in each period does not 
change much, then the hedonic time dummy and hedonic imputation esti-
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mates of quality- adjusted price change will be much the same, even if  char-
acteristic valuations change over the two periods.

Condition (37) can be refi ned. Recall (23) in the previous section, which 
provided a formula for the hedonic time dummy vector of quality adjust-
ment factors, �∗. The techniques that were used to establish (23) can be used 
in order to establish the following expressions for the period 0 and 1 least 
squares estimates �0∗ and �1∗ that appear in (26) and (27):

(38) �0∗ � (Z0∗TZ0∗)�1Z0∗Ty0∗; �1∗ � (Z1∗TZ1)�1Z1∗Ty1∗,

where the yt∗ and Z t∗ are the demeaned yt and Zt as in the previous section.13 
Now premultiply both sides of (23) by the matrix Z0∗TZ0∗ � Z1∗TZ1∗ and 
we obtain the following equation:14

(39) (Z0∗TZ0∗ � Z1∗TZ1∗)�∗ � Z0∗Ty0∗ � Z1∗Ty1∗
 � Z0∗TZ0∗(Z0∗TZ0∗)�1Z0∗Ty0∗ 
 � Z1∗TZ1∗(Z1∗TZ1∗)�1Z1∗Ty1∗
 � Z0∗TZ0∗�0∗ � Z1∗TZ1∗�1∗   using (38).

Equation (39) tells us that if  �0∗ equals �1∗, then �∗ is necessarily equal 
to this common vector. We now use equation (39) in order to evaluate the 
following expression:

(40) 2(Z0∗TZ0∗ � Z1∗TZ1∗)� 1
�
2

�0∗ � 
1
�
2

�1∗ � �∗�
 � (Z0∗TZ0∗ � Z1∗TZ1∗)(�0∗ � �1∗) 
 � 2(Z0∗TZ0∗�0∗ � Z1∗TZ1∗�1∗)   using (39).
 � (Z0∗TZ0∗)(�1∗ � �0∗) � (Z1∗TZ1∗)(�1∗ � �0∗)
 � �(Z1∗TZ1∗ � Z0∗TZ0∗)(�1∗ � �0∗)

Now premultiply both sides of (40) by (1/ 2)(Z0∗TZ0∗ � Z1∗TZ1∗)– 1 and sub-
stitute the resulting expression for (1/2)�0∗ � (1/2)�1∗ –  �∗ into equation 
(35) in order to obtain the following expression for the difference between 
the hedonic dummy estimate of constant quality price change and the cor-
responding symmetric hedonic imputation estimate:

(41) LPHD � LPHI� �
1
�
2 � 11

TZ1

�
N(1)

 � 
10

TZ0

�
 N(0) �

 (Z0∗TZ0∗ � Z1∗TZ1∗)�1(Z1∗TZ1∗ � Z0∗TZ0∗)

 (�1∗ � �0∗).

13. Note that Zt∗Tyt∗/ N(t) can be interpreted as a vector of  sample covariances between 
the log prices in period t and the amounts of the characteristics present in the period t models 
while Zt∗TZt∗/ N(t) can be interpreted as a sample variance covariance matrix for the model 
characteristics in period t. In the main text, we refer to Zt∗TZt∗ as a characteristics “total” 
variance covariance matrix.

14. In the single characteristic case, equation (40) tells us that �∗
1 is a weighted average of 

�1
0∗ and �1

1∗.
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Using equation (41), it can be seen that the hedonic time dummy and 
hedonic imputation measures of log price change will be identical if  any of  
the following three conditions are satisfi ed:

•  11
TZ1/ N(1) equals 10

TZ0/ N(0) so that the average amount of each charac-
teristic across models in each period stays the same

•  Z1∗TZ1∗ equals Z0∗TZ0∗ so that the model characteristics total variance 
covariance matrix is the same across periods15

•  �1∗ equals �0∗ so that separate (unweighted) hedonic regressions in 
each period give rise to the same characteristics quality adjustment 
factors.16

In the following sections, we will adapt the previous material to cover the 
case of weighted hedonic regressions.

4.4   Weighted Time Dummy Hedonic Regressions

We now consider a weighted two- period time dummy variable hedonic 
regression model. We again assume that there are N(t) observations on the 
prices, pt

n, of various models n in period t for t � 0, 1, but we now assume that 
the quantities purchased for each model n in period t, qt

n, are also observable. 
Model n in period t again has the vector of K characteristics associated with 
it, [zt

n1, z
t
n2, . . . , z

t
nK] for t � 0, 1 and n � 1, 2, . . . , N(t). The expenditure share 

of  model n in period t is

(42) st
n � 

pt
nq

t
n

�
 ∑N

i�
(t)
1 pi

tqi
t
;    t � 0, 1; n � 1, 2, . . . , N(t).

Let st � [st
1, . . . , s

t
N(t)]

T denote the period t expenditure share vector for 
t � 0, 1 and let St denote the diagonal period t share matrix that has the ele-
ments of the period t expenditure share vector st running down the main 
diagonal for t � 0,1. The matrix (St)1/2 is the square root matrix of  St; that is, 
the positive square roots of the elements of the period t expenditure vector 
st are the diagonal elements of this diagonal matrix for t � 0, 1. As in the 
previous sections, yt is the vector of period t log price changes and Zt is the 
period t model characteristics matrix for t � 0,1.

With the previous notational preliminaries out of the way, the weighted 
time dummy regression model that is the counterpart to the unweighted 
model defi ned earlier by (2) and (3) is defi ned as follows:17

15. This condition for equality is also somewhat unanticipated.
16. Using equation (38), we can obtain a more “fundamental” condition in terms of variance 

covariance matrices for the equality of �0∗ to �1∗; namely the equality of (Z0∗TZ0∗)– 1 Z0∗Ty0∗ 
to (Z1∗TZ1∗)– 1 Z1∗Ty1∗.

17. Diewert (2003b, 26) explained the logic behind the weighting scheme in the regression 
model defi ned by equations (43) and (44). For additional material on weighting in hedonic 
regressions, see Diewert (2005, 563; 2006, 13). Basically, the form of weighting that is used in 
equations (43) and (44) leads to measures of price change that are comparable (in the case where 
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(43) (S0)1/2y0 � (S0)1/2(10�0 � 00�1 � Z0�) � �0;

(44) (S1)1/2y1 � (S1)1/2(01�0 � 11�1 � Z1�) � �1,

where the �t vectors have elements εt
n that are independently distributed 

normal variables with zero means and constant variances.
Let �∗

0, �∗
1, �∗

1, . . . ,�∗
K be the maximum likelihood or least squares estima-

tors for the parameters that appear in (43) and (44). Then letting e0 and e1 be 
the vectors of least squares residuals for equations (43) and (44) respectively, 
the following equations will be satisfi ed by the parameter estimates and the 
data:

(45) (S0)1/2y0 � (S0)1/2(10�∗
0 � 00�∗

1 � Z0�∗) � e0;

(46) (S1)1/2y1 � (S1)1/2(01�∗
0 � 11�∗

1 � Z1�∗) � e1.

The counterparts to equations (10) and (11) are now:

(47) �∗
0 � s0Ty0 � s0TZ0�∗ � s0T(y0 � Z0�∗);

(48) �∗
1 � s1Ty1 � s1TZ1�∗ � s1T(y1 � Z1�∗).

Note that stTyt � ΣN
n�1

(t)st
n lnpt

n is the period t expenditure share weighted 
average of the log prices in period t for t � 0,1. Furthermore, note that stTZt 
is a 1 by K vector whose kth element is equal to the period t expenditure 
share weighted average ΣN

n�1
(t)st

nzt
nk of  the amounts of characteristic k that are 

present in the period t models for t � 0, 1 and k � 1, . . . , K. Thus, each �t
∗ 

is equal to the expenditure share weighted average of the log prices for the 
models present in period t less a quality adjustment consisting of the inner 
product of the characteristic prices �∗ with an expenditure share weighted 
average amount of each characteristic across the models that are present 
in period t. Alternatively, the second set of equalities in equations (47) and 
(48) shows that each �t

∗ is equal to the period t expenditure share weighted 
average of the quality- adjusted log prices, yt –  Zt�∗, for the models pres-
ent in that period. Now use equations (47) and (48) in order to defi ne the 
following weighted hedonic time dummy estimate of the change in log prices 
going from period 0 to 1: LPWHD, is the following difference in the log price 
levels:

(49) LPWHD � �∗
1 � �∗

0 � s1T(y1 � Z1�∗) � s0T(y0 � Z0�∗).

Thus, the weighted hedonic time dummy estimate of the change in log prices 
is equal to a period 1 expenditure share weighted average of the quality-
 adjusted log prices, y1 –  Z1�∗, less a period 0 expenditure share weighted 
average of the quality- adjusted log prices, y0 –  Z0�∗.

the characteristics of the models can be defi ned by dummy variables) to the “best” measures 
of price change in bilateral index number theory. It should be noted that the present weighted 
model will be equivalent to the previous unweighted model (4) and (5) only if  the number of 
observations in each period are equal, so that N(0) equals N(1), and each share component st

n 
is equal to a common value.
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For later reference, we can adapt the methodology presented at the end 
of section 4.2 in order to work out an explicit expression for the estimated 
characteristic prices, �∗. Recall the defi nitions of the diagonal matrices S0 
and S1. Defi ne S as a block diagonal matrix that has the blocks S0 and S1 
on the main diagonals and let S1/2 be the corresponding square root matrix; 
that is, this matrix has the elements of the period 0 expenditure share s0 and 
the period 1 expenditure share vector s1 running down the main diagonal. 
Adapting the analysis in section 4.1, we need to replace the y vector in that 
section by S1/2y and the Z matrix in that section by S1/2Z, the V matrix by 
S1/2V, and defi ne the counterpart M° to the projection matrix M defi ned by 
equation (16) as follows:

(50) M° � I � S1/2V(VTSV)�1VTS1/2

 � I � S1/2VVTS1/2,

where the second equality in equation (50) follows from the fact that VTSV 
equals I2, a two- by- two identity matrix. Now defi ne y° and Z° in terms of 
M° and the original y vector and Z matrix as follows:

(51) y° � M°S1/2y
 � (I � S1/2VVTS1/2)S1/2y using (50);
 � S1/2(I � VVTS)y;

(52) Z° � M°S1/2Z
 � (I � S1/2VVTS1/2)S1/2Z using (50).
 � s1/2(I � VVTS)Z

The new vector of time dummy quality adjustment factors �∗ can now be 
defi ned as the following counterpart to equation (19):

(53) �∗ � (Z°TZ°)�1Z°Ty°.

Once �∗ has been determined by equation (53), then we can use equa-
tions (47) and (48) to determine the weighted least squares estimators for 
�∗

0 and �∗
1.

It is possible to express the �∗ defi ned by (53) in a more transparent way 
using our defi nitions of the matrices Z, V, and S. Recall that in section 4.2, 
the demeaned log price change vectors yt∗ defi ned by (20) and the demeaned 
characteristics matrices Zt∗ defi ned by (21) proved to be useful. In those 
defi nitions, we used simple unweighted means. In the present context, we 
use expenditure share weighted average means as follows:

(54) yt∗ � yt � 1tstTyt;    t � 0, 1;

(55) Zt∗ � Zt � 1tstTZt;    t � 0, 1.

Let the nth component of the vector yt∗ be yn
t∗ and let the nth row of the 

N(t) by K dimensional matrix Zt∗ be zn
t∗ for t � 0, 1 and n � 1, 2, . . . , N(t). 

Then it can be shown that the vector of characteristics prices �∗ defi ned by 
(53) can be written in terms of the components of the demeaned log price 
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change vectors yt∗, the components of the expenditure share vectors st, and 
the rows of the demeaned characteristics matrices Zt∗ as follows:

(56) �∗ � �
n=1

N (0)

∑ s0
nzn

0∗Tzn
0∗ � 

n=1

N (1)

∑ s1
nzn

1∗Tzn
1∗��1

 �
n=1

N (0)

∑ s0
nzn

0∗Tyn
0∗ � 

n=1

N (1)

∑ s1
nzn

1∗Tyn
1∗�.

Note that ΣN
n�1

(t)st
nzn

t∗Tzn
t∗ can be interpreted as a period t expenditure share 

weighted sample variance covariance matrix18 for the model characteristics 
present in period t and ΣN

n�1
(t)st

nzn
t∗Tyn

t∗ can be interpreted as a period t expen-
diture share weighted sample covariance matrix between the period t log 
prices and the characteristics of the models present in period t.

We now generalize the analysis on unweighted hedonic imputation indexes 
presented in section 4.3 to the weighted case.

4.5   Weighted Hedonic Imputation Indexes

Using the notation explained in the previous section, the two sepa-
rate weighted hedonic regressions that are counterparts to the separate 
unweighted regressions (24) and (25) are now equations (57) and (58):

(57) (S0)1/2y0 � (S0)1/2(10	0 � Z0�0) � 
0;

(58) (S1)1/2y1 � (S1)1/2(11	1 � Z1�1) � 
1,

where 
0 and 
1 are independently distributed normal random variables with 
means zero and constant variance within each period. Let 	0

∗, �1
0∗, . . . , �K

0∗ 
be the maximum likelihood or least squares estimators for the parameters 
that appear in equation (57) and let 	∗

1, �1
1∗, . . . , �K

1∗ be the maximum likeli-
hood or least squares estimators for the parameters that appear in equation 
(58). Then letting u0 and u1 be the vectors of least squares residuals for equa-
tions (57) and (58), respectively, the following equations will be satisfi ed by 
the parameter estimates and the data:

(59) (S0)1/2y0 � (S0)1/2(10	0
∗ � Z0�0∗) � u0;

(60) (S1)1/2y1 � (S1)1/2(11	1
∗ � Z1�1∗) � u1.

The weighted counterparts to equations (30) and (31) are:

(61) 	0
∗ � s0Ty0 � s0TZ0�0∗ � s0T(y0 � Z0�0∗);

(62) 	1
∗ � s1Ty1 � s1TZ1�1∗ � s1T(y0 � Z1�1∗).

18. Note that for the present weighted model, ΣN
n�1

(t)st
nzn

t∗Tzn
t∗ is a true period t expenditure 

share weighted sample variance covariance matrix, whereas for the earlier unweighted model, 
the counterpart to this sample variance covariance matrix was Zt∗TZt∗, which was the period 
t total variance covariance matrix, equal to N(t) times the sample variance covariance matrix 
for the characteristics present in period t models.
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As in section 4.3, we cannot simply take the difference between 	1
∗ and 

	0
∗ as a measure of  constant quality log price change between periods 0 

and 1, because the quality adjustment parameters, �0∗ and �1∗, are again 
different between the two periods. As in section 4.3, we can use the period 
0 parameters, �0∗, to form estimates of quality- adjusted log prices for the 
models present in period 1 and then take the period 1 weighted average of 
the resulting quality- adjusted log prices, which we denote by �1

∗:

(63) �1
∗ � s1Ty1 � s1TZ1�0∗ � s1T(y1 � Z1�0∗).

Note that the previous estimate of a period 1 log price level is analogous to 
	1

∗ defi ned by equation (62) except that the period 0 hedonic quality adjust-
ment factors, �0∗, are used in equation (63), whereas the period 1 hedonic 
quality adjustment factors, �1∗, were used in equation (62). Since the period 
0 and 1 estimated price levels, 	0

∗ and �1
∗, use the same quality adjustment 

factors �0∗ in order to form constant quality log prices in each period, we 
can again take the difference �1

∗ less 	0
∗ as a measure of quality- adjusted log 

price change between periods 0 and 1.19 This measure of overall log price 
change depends asymmetrically on the characteristics price vector �0∗ that 
was obtained from the period 0 hedonic regression. It can be seen that we 
can obtain an alternative measure of  log price change between the peri-
ods using the period 1 hedonic regression characteristics price vector �1∗. 
Thus, use the period 1 characteristics price vector, �1∗, to form estimates of 
quality- adjusted log prices for the models present in period 0 and then take 
the period 0 weighted average of the resulting quality- adjusted log prices, 
which we denote by �0

∗:

(64) �0
∗ � s0Ty0 � s0TZ0�1∗ � s0T(y0 � Z0�1∗).

Note that the previous estimate of a period 0 log price level is analogous to 
	0

∗ defi ned by equation (61) except that the period 1 hedonic quality adjust-
ment factors, �1∗, are used in (64) whereas the period 0 hedonic quality 
adjustment factors, �0∗, were used in equation (61). Since the period 0 and 
1 estimated price levels, �0

∗ and 	1
∗, use the same quality adjustment factors 

�1∗ in order to form constant quality log prices in each period, we can take 
the difference 	1

∗ less �0
∗ as a second measure of log price change between 

periods 0 and 1.20

Again following Diewert (2003b, 20) and de Haan (2003, 14; 2004), it 
seems preferable to take a symmetric average of the two previous estimates of 
log price change over the two periods. We again choose the arithmetic mean 

19. Haan (2003, 12) defi ned the exponential of this measure of log price change as the geo-
metric Laspeyres hedonic imputation index of price change, except that for the matched models 
in both periods, he used actual prices rather than predicted prices.

20. Haan (2003, 13) defi ned the exponential of this measure of log price change as the geo-
metric Paasche hedonic imputation index of price change, except that for the matched models 
in both periods, he used actual prices rather than predicted prices. Diewert (2003b, 13– 14) 
considered similar hedonic imputation indexes except that he worked with ordinary Paasche 
and Laspeyres type indexes rather than geometric Paasche and Laspeyres type indexes.
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as our symmetric average and defi ne the weighted hedonic imputation estimate 
of the change in log prices going from period 0 to 1, LPWHI, as follows:21

(65) LPWHI � 
1
�
2

[�1
∗ � 	0

∗] � 
1
�
2

[	1
∗ � �0

∗].

 � 
1
�
2

[s1T(y1 � Z1�0∗) � s0T(y0 � Z0�0∗) 

 � s1T(y1 � Z1�1∗) � s0T(y0 � Z0�1∗)]

 � s1T�y1 � Z1� 1
�
2

�0∗ � 
1
�
2

�1∗�� 

 � s0T�y0 � Z0� 1
�
2

�0∗ � 
1
�
2

�1∗��.

Recall that in the weighted hedonic time dummy method for quality adjust-
ing log prices yt for each period t, we used the characteristics quality adjust-
ments defi ned by Zt�∗, where �∗ was a constant across periods vector of 
quality adjustment factors. Looking at the right- hand side of equation (65), 
it can be seen that the weighted hedonic imputation method for quality 
adjusting log prices in each period is similar but now the period t vector of 
quality adjustments is Zt[(1/2)�0∗ � (1/2)�1∗] instead of Zt�∗.

Using equations (49) and (65), we can form the following expression for 
the difference in the overall log price change using the two weighted methods 
for quality adjustment:

(66) LPWHD � LPWHI � s1T[y1 � Z1�∗] � s0T[y0 � Z0�∗] 

 � �s1T�y1 � Z1� 1
�
2

�0∗ � 
1
�
2

�1∗�� 

 � s0T�y0 � Z0� 1
�
2

�0∗ � 
1
�
2

�1∗���
 � (s1TZ1 � s0TZ0)� 1

�
2

�0∗ � 
1
�
2

�1∗ � �∗�.

Thus, the hedonic time dummy and hedonic imputation measures of log 
price change will be identical if  either of  the following two conditions are 
satisfi ed:

(67) s1TZ1 � s0TZ0;

(68) �∗ � 
1
�
2

�0∗ � 
1
�
2

�1∗.

21. The exponential of  this measure of  price change is approximately equal to Haan’s 
(2003, 14) geometric mean of his geometric Paasche and Laspeyres hedonic imputation indexes, 
which he regarded as an approximation to Törnqvist hedonic imputation index.
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Condition (67) says that the expenditure share weighted average amount 
of each characteristic for the models present in period 1 equals the corre-
sponding expenditure share weighted average amount of each characteristic 
for the models present in period 0. Condition (68) says that the time dummy 
vector of quality adjustment factors, �∗, is equal to the arithmetic average 
of the two separate weighted hedonic regression estimates for the quality 
adjustment factors, (1/2)�0∗ � (1/2)�1∗.

As in section 4.3, condition (68) can be strengthened. Recall equation 
(56) in the previous section, which provided a formula for the hedonic time 
dummy vector of quality adjustment factors, �∗. Using the same notation 
to that used in the previous section, we can establish the following expres-
sions for the period 0 and 1 weighted least squares estimates �0∗ and �1∗ 
that appear in equations (59) and (60):

(69) �0∗ � �
n=1

N (0)

∑ s0
nzn

0∗Tzn
0∗��1�

n=1

N (0)

∑ s0
nzn

0∗Tyn
0∗�;

(70) �1∗ � �
n=1

N (1)

∑ s1
nzn

1∗Tzn
1∗��1�

n=1

N (0)

∑ s1
nzn

1∗Tyn
1∗�.

where the yt∗ and Zt∗ are the demeaned yt and Zt as in the previous section. 
Now premultiply both sides of equation (56) by the matrix [ΣN

n�1
(0)s0

nzn
0∗Tzn

0∗ 
� ΣN

n�1
(1)s1

nzn
1∗Tzn

1∗] and we obtain the following equation that is the weighted 
counterpart to equation (40):

(71) �
n=1

N (0)

∑ s0
nzn

0∗Tzn
0∗ � 

n=1

N (1)

∑ s1
nzn

1∗Tzn
1∗��∗

 � 
n=1

N (0)

∑ s0
nzn

0∗Tyn
0∗ � 

n=1

N (1)

∑ s1
nzn

1∗Tyn
1∗

 � �
n=1

N (0)

∑ s0
nzn

0∗Tzn
0∗��

n=1

N (0)

∑ s0
nzn

0∗Tzn
0∗��1�

n=1

N (0)

∑ s0
nzn

0∗Tyn
0∗�

 � �
n=1

N (1)

∑ s1
nzn

1∗Tzn
1∗��

n=1

N (1)

∑ s1
nzn

1∗Tzn
1∗��1�

n=1

N (1)

∑ s1
nzn

1∗Tyn
1∗�

 � �
n=1

N (0)

∑ s0
nzn

0∗Tzn
0∗��0∗ � �∑

n=1

N (1)

∑ s1
nzn

1∗Tzn
1∗��1∗

using (69) and (70).

Equation (71) tells us if  �0∗ equals �1∗, then �∗ is necessarily equal to this 
common vector. We now use equation (71) in order to evaluate the following 
expression:
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(72) 2�
n=1

N (0)

∑ s0
nzn

0∗Tzn
0∗ � 

n=1

N (1)

∑ s1
nzn

1∗Tzn
1∗�� 1

�
2

�0∗ � 
1
�
2  

�1∗ � �∗�
 � �

n=1

N (0)

∑ s0
nzn

0∗Tzn
0∗ � ∑

n=1

N (1)

∑ s1
nzn

1∗Tzn
1∗�[�0∗ � �1∗]

 � 2��
n=1

N (0)

∑ s0
nzn

0∗Tzn
0∗��0∗ � �

n=1

N (1)

∑ s1
nzn

1∗Tzn
1∗��1∗�  using (71).

 � �
n=1

N (0)

∑ s0
nzn

0∗Tzn
0∗�[�1∗ � �0∗] � �

n=1

N (1)

∑ s1
nzn

1∗Tzn
1∗�[�1∗ � �0∗]

 � ��
n=1

N (1)

∑ s1
nzn

1∗Tzn
1∗ � 

n=1

N (0)

∑ s0
nzn

0∗Tzn
0∗�[�1∗ � �0∗]

Now premultiply both sides of  equation (72) by (1/ 2)[ΣN
n�1

(0)s0
nzn

0∗Tzn
0∗ � 

ΣN
n�1

(1)s1
nzn

1∗Tzn
1∗]– 1 and substitute the resulting expression for (1/2)�0∗ � (1/2)�1∗ 

–  �∗ into equation (66) in order to obtain the following expression for the 
difference between the hedonic dummy estimate of constant quality price 
change and the corresponding symmetric hedonic imputation estimate using 
weighted hedonic regressions in both cases:

(73) LPWHD � LPWHI � (s1TZ1 � s0TZ0)� 1
�
2

�0∗ � 
1
�
2

�1∗ � �∗�
 � �

1
�
2

[s1TZ1 � s0TZ0]�
n=1

N (0)

∑ s0
nzn

0∗Tzn
0∗ � 

n=1

N (1)

∑ s1
nzn

1∗Tzn
1∗��1

 �
n=1

N (1)

∑ s1
nzn

1∗Tzn
1∗ � 

n=1

N (0)

∑ s0
nzn

0∗Tzn
0∗�[�1∗ � �0∗].

Using equation (73), it can be seen that the weighted hedonic time dummy 
and the weighted hedonic imputation measures of log price change will be 
identical if  any of  the following three conditions are satisfi ed:

•  s1TZ1 equals s0TZ0 so that the period expenditure share weighted amount 
of each characteristic across models in each period stays the same

•  ΣN
n�1

(1)s1
nzn

1∗Tzn
1∗ equals ΣN

n�1
(0)s0

nzn
0∗Tzn

0∗ so that the expenditure share 
weighted model characteristics variance covariance matrix is the same 
in the two periods

•  �1∗ equals �0∗ so that separate (weighted) hedonic regressions in each 
period give rise to the same characteristics quality adjustment factors

Which weighted method of quality adjustment is “best”? If  either the 
weighted average amounts of each characteristic are much the same in the 
two periods being considered so that s1TZ1 is close to s0TZ0, or if  the expen-
diture share weighted model characteristics variance covariance matrices are 
similar across periods, or if  the separate weighted hedonic regression quality 
adjustment factors do not change much across the two periods, then it will 
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not matter much which method is used, which is the new result demonstrated 
in this chapter. If, however, s1TZ1 is not close to s0TZ0, the expenditure share 
weighted model characteristics variance covariance matrices are different 
across periods, and the two separate weighted hedonic regressions (57) and 
(58) generate very different estimates for the quality adjustment factors, �0∗ 

and �1∗, then the method of quality adjustment could matter. If  equations 
(57) and (58) are run together as a pooled regression model and an F test 
rejects the equality of �0 and �1, then it seems sensible to use the weighted 
hedonic imputation method, which does not depend on having �0 equal to 
�1 as does the hedonic time dummy method. If  the F test does not reject the 
equality of �0 and �1 and there are a large number of characteristics in the 
model, then valuable degrees of freedom will be saved if  the weighted time 
dummy hedonic regression model is used. However, in this case, since �0 and 
�1 are necessarily close, it should not matter much which method is used. 
Thus, it seems that the hedonic imputation methods probably give rise to 
“better” quality adjustments than dummy variable methods. We will revisit 
this discussion in section 4.7.

4.6   Empirical Illustration: Desktop Personal Computers (PCs)

The empirical study is of  the measurement of  changes in the quality-
 adjusted monthly prices of  British desktop PCs in 1998. The data are 
monthly scanner data from the bar code readers of PC retailers. The data 
amounted to 7,387 observations (a particular make and model of a PC sold 
in a given month in an either specialized or nonspecialized PC store- type) 
representing a sales volume of 1.5 million models worth £1.57 billion. Table 
4.1 shows that for the January to February price comparison there were 
584 matched models available in both months for the price comparison. 
However, for the January to December price comparison only 161 matched 
models were available, with 509 unmatched “old” models (available in Janu-
ary, but unmatched in December) and 436 unmatched “new” models (avail-
able in December but unavailable in January for matching).22 For product 
markets where there are a high proportion of unmatched models, Silver and 
Heravi (2005) demonstrated why matched- model indexes suffer from sample 
selectivity bias and why hedonic indexes should be used instead.

The calculation of hedonic indexes requires the estimation of hedonic 
regression equations. To simplify the illustration we fi rst include only a 
single explanatory variable in the hedonic (price) regressions, the speed in 
MHz. The regressions were run separately for each month for the hedonic 
imputation indexes, and over January and the current month, including a 
dummy variable for the latter, for the hedonic dummy indexes. The estimated 

22. Bear in mind that some of the indexes estimated in this chapter are also weighted by shares 
of sales values and that the fall off in the coverage of the matched sample by sales is even more 
dramatic: for the January to December comparison matched models made up only 71 percent 
of the January sales value and a mere 12 percent of the December sales value.
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coefficients for speed in the hedonic regressions were statistically signifi cant 
coefficients with the expected positive signs.23

Table 4.2 columns (1) and (2) show falls in the unweighted hedonic dummy 
and hedonic imputation indexes of  73.2 and 76.4 percent, respectively, a 
difference of 3.2 percentage points. Columns (4) through (6) show the con-
stituent elements of equation (41) that make up this difference: column (4) is 
the change in mean characteristics, [11

TZ1/ N(1)] –  [10
TZ0/ N(0)], average speed 

increased by 127 MHz. over the year. Column (5) is the change in the (total) 
variance- covariance characteristics matrices relative to their sum in the two 
periods, [Z0∗TZ0∗ � Z1∗TZ1∗]– 1[Z1∗TZ1∗ –  Z0∗TZ0∗], with one characteristic 
in this illustration it is the relative change in the variance of speed, falling in
some early months but increasing thereafter. Column (6) is the change in the 
characteristic parameter estimates, [�1∗ –  �0∗], the estimated parameters 
decreased over time. The decomposition of the difference between the hedo-
nic dummy and imputation indexes given in column (3) is exactly as dem-
onstrated in column (7)—the difference is equal to one- half  of the product 
of  columns (4), (5), and (6), following equation (41). We stress that the 
decomposition is based on the product of  these constituent parts. If  either 
of these changes is zero, then there will be no difference between the indexes. 
While it is clear that there were large increases in the mean speed of PCs 
over the year (column [4]) they did not materialize in substantial difference 

Table 4.1 Number of matched and unmatched observations

  
Number of 

matched- models  

Number of unmatched 
old models in January 

of the comparison  

Number of unmatched 
new models in the 

current month of the 
comparison

February 584 86 104
March 577 93 181
April 346 324 191
May 315 355 227
June 297 373 265
July 282 388 301
August 276 394 351
September 247 423 382
October 193 477 402
November 164 506 435
December  161  509  436

Note: Figures are for comparisons between January and each current month.

23. The F- statistics for the null hypothesis of coefficients being equal to zero averaged 34.2 
for hedonic imputation indexes and 53.4 for hedonic dummy indexes, consistently rejecting the 
null at a 0.01 percent level and lower. The explanatory power of the estimated equations were 
naturally low for this specifi cation with a single explanatory variable, especially since they did 
not include dummy variables on brand. Details of estimates from a fully specifi ed model are 
available from the authors.
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between the formulas, being tempered by the smaller changes in columns 
(5) and (6). The formulation also provides insights into the factors behind 
any difference in the results from these methods. For example, in September 
and December the changes in the estimated parameters were about the same, 
yet the difference between the hedonic dummy and imputation indexes in 
column (3) was higher in December than in September, driven by the larger 
change in mean characteristics in December.

The indexes considered in table 4.2 were unweighted and thus unrepre-
sentative if  models differ in their popularity. Conventional index number 
theory requires that price changes should be weighted by relative expen-
ditures shares and the same requirement should apply to hedonic indexes. 
In sections 4.4 and 4.5 weighted hedonic dummy and hedonic imputation 
indexes were formulated and equation (73) provided a decomposition of the 
difference between them. The results for PCs for weighted hedonic indexes, 
their difference, and the constituent elements underlying the difference are 
given in table 4.3. Again the difference depends on the product of  three 
terms: the change in the expenditure share weighted mean of each char-
acteristics, [s1TZ1 –  s0TZ0]; the change in the expenditure share weighted 
characteristics variance- covariance matrix, [ΣN

n�1
(0)s0

nzn
0∗Tzn

0∗ � ΣN
n�1

(1)s1
nzn

1∗Tzn
1∗]– 1 

� [ΣN
n�1

(1)s1
nzn

1∗Tzn
1∗ –  ΣN

n�1
(0)s0

nzn
0∗Tzn

0∗]; and the change in the parameters esti-
mates, [�1∗ –  �0∗] from the separate (weighted) hedonic regressions in each 
period. Table 4.3 shows respective falls for the weighted hedonic dummy and 
weighted hedonic imputation indexes of 43.1 and 50.6 percent (imputation) 
over the year, compared with falls in the corresponding unweighted indexes 
of 73.2 and 76.4 percent in table 4.2, thus weighting matters. The decompo-
sition in table 4.3 follows equation (73) and is exact with (one- half  of) the 
product of columns (4) to (6) (in column [7]) equaling the difference between 
the formulas in column (3). The differences are at their highest in Septem-
ber and December at over 7 percentage points, in part due to the relatively 
high parameter changes. Again comparing September with December, the 
parameter changes in column (6) are similarly high at – 0.0039. But again the 
change in the mean speed in column (4) at 139.6 MHz in December is much 
higher than its September fi gure of 94.45 MHz.24 This should translate into 
a very much lower difference between the formulas in September compared 
with December, but for the weighted results it does not. This is because the 
much higher December change in characteristics, column (4), is largely offset 
by the much lower change in the relative variance in column (5).

The previous empirical example was limited to a single price- determining 
quality characteristic variable for illustrative purposes. The decomposition 
for more than one characteristic is similar in principle to the case of a single 

24. The multiplication is of the change in average speed by the parameter estimate for speed. 
The result is invariant to the units of measurement used for speed since an accordingly lower 
coefficient would result if  the units of measurement for speed were, say, doubled.
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explanatory variable, but the constituent items of equation (73) are matrices 
and it is the product of these matrices that is required to account for the 
difference between the formulas. The regression estimates are now based on 
three quality characteristics, speed in MHz, the hard disk capacity (CAP), 
and random access memory (RAM), both in MB. The estimated coefficients 
for the three variables in the hedonic regressions were statistically signifi cant 
with the expected positive signs.25 The result of the decomposition of the 
difference between weighted hedonic dummy and weighted hedonic imputa-
tion indexes based on multiple characteristics for the January with Decem-
ber comparison only (for ease of exposition) is presented in the matrix for-
mat of equation (73) and as table 4.4.

The weighted hedonic dummy index in December compared with Janu-
ary, based on the extended specifi cation, fell by 51.5 percent, compared 
with the fall in the weighted hedonic imputation index of 63.3, a sizable 
difference of 11.8 percentage points. From tables 4.2 and 4.3 we saw that 
weighting matters. Here we identify the importance of a fuller specifi cation 
of the hedonic regression used and its effect on the magnitude of the index 
change and the spread between the two estimates. The fuller specifi cation 
has led to an increase in the spread between the two indexes from 7.5 to 
11.8 percentage points. Prices are estimated to have fallen further using the 
extended variable set: a fall for the weighted hedonic dummy hedonic of 51.5 
compared with 43.1 and for the hedonic imputation index of 63.3 compared 
with 50.6 percent. Additional explanatory variables in a quality- adjusted 
hedonic regression based index are probably preferable.26 Yet in spite of 
this illustration, a fuller specifi cation of the hedonic regression need not 
necessarily lead to an increase in the difference between the formulas. If  
any component of  an additional variable—its change in relative disper-
sion, covariance, parameter, or mean value—is negligible, then it will have 
little effect on the difference. Indeed, the overall impact of additional vari-
ables in the product of matrices in equation (73) may take a different sign 
and reduce the discrepancy. However, in general, product development in 
high technology products such as PCs takes the form of increased product 
differentiation (dispersion of characteristics values), improvements in many 
product dimensions at the same time (which will generally change means and 
covariances), and decreasing characteristic production costs and marginal 
utilities, as consumers realign their preferences to the new standards (which 
will generally lead to changes in parameter estimates). Thus, our expectation 
is that the HI and HD approaches to measuring price change may frequently 
give different estimates of overall price change in dynamic markets.

25. The adjusted-R2 were 0.40 and 0.31 for the hedonic regression equations in January and 
November, respectively. The specifi cation could be extended to include many more variables 
including dummy variables for brands. The exposition here was simplifi ed to illustrate the 
decomposition for more than one explanatory variable.

26. There are statistical caveats to this statement; that is, it may not be useful to include addi-
tional explanatory variables if  there are insufficient degrees of freedom or if  multicollinearity 
between included and omitted variables is strong.
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The four terms in equation (73) are reproduced following as matrices, 
and as table 4.4, for the December with January comparison, the product 
of which is equal to the difference between the formulas, that is

�
1
�
2

[s1TZ1 � s0TZ0]�
n=1

N (0)

∑ sn
0zn

0∗Tzn
0∗ � 

n=1

N (1)

∑ sn
1zn

1∗Tzn
1∗��1

�
n=1

N (1)

∑ s1
nzn

1∗Tzn
1∗ � 

n=1

N (0)

∑ s0
nzn

0∗Tzn
0∗�[�1∗ � �0∗]

 � �
1
�
2

[139.593, 180.140, 14.405] �

 �
6,245.2

5,422.8

637.2
  

5,422.8

55,658.7

3,626.1
  

637.2

3,626.1

1,131.0
�– 1

 �

�
1,728.1

5,168.0

460.2
  

5,168.0

– 3,672.3

– 193.9
  

460.2

– 193.9

167.3
� �

– 0.00743

0.00127

– 0.00612
�

 � 0.1182.

Table 4.4 Factors contributing to difference between weighted HD and weighted HI 
estimates for PCs for three variables: January to December comparison

LPHI –0.4311 0.0001
LPHI –0.5057 –0.0004

 LPHD–LPHD 0.0745 0.0012 

 Factors contributing to change  

Change in mean characteristics Change in variances

Speed 139.593 Speed 1,728.1
CAP 180.140 CAP –3,672.3
RAM 14.405 RAM 167.3

Inverse of total variances Change covariances

Speed 6,245.2 Speed:CAP 5,168.0
CAP 55,658.7 Speed:RAM 460.2
RAM 1,131.1 CAP:RAM –1,93.9

Inverse of total covariances Change in parameter estimates

Speed:CAP 5,422.8 Speed –0.00743
Speed:RAM 637.2 CAP 0.00127

 CAP:RAM  3,626.1  RAM  –0.00612  
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The values of the elements in the fi rst row or column of the matrices are 
for the characteristic variable speed, the second, the CAP, and third, RAM. 
The vectors and matrices in turn are the change in the mean value of the 
characteristics, which were all positive; the sum of the inverted variance-
 covariance characteristics matrix over the two months (the second matrix 
in equation [73] has been inverted); the change in the variance- covariance 
characteristics matrix over the two months; and the change in the estimated 
parameters. Thus in the third matrix, for example, the diagonal values of 
1,728.1, – 3,672.3, and 167.3 are the change in the variances of the charac-
teristics speed, CAP, and RAM, respectively. Note that in the last matrix, 
the parameter estimates for speed and RAM fall over the period by a similar 
amount, but the increase in the average value of speed (in the fi rst matrix) is 
much more than that of the mean RAM size, and thus is a more signifi cant 
driver of the difference between the formulas. There is also a marked increase 
in the average CAP, yet its parameter difference estimate at 0.00127 is posi-
tive, so that a higher marginal value is attached to it in December as com-
pared with January, yet the absolute value of this change, and thus its impact 
on the difference, is lower than the corresponding change for speed.

4.7   Concluding Remarks on the Choice between Hedonic 
Imputation Indexes and Hedonic Dummy Indexes

Having identifi ed the factors behind the difference between the hedonic 
dummy and imputation indexes, we turn to consider which, if  any, formula 
is more appropriate. Given that both approaches make symmetric use of 
information in the two periods and can be formulated to have the same 
functional form and weighting system, a plausible stance, when they produce 
different results, is to take a (geometric) mean of the two. Yet there may be 
reasons to prefer one against the other.

The main concern with the use of  the hedonic time dummy index ap-
proach, as given by the respective unweighted and weighted equations (12) 
and (49), is that by construction, it constrains the parameters on the char-
acteristic variables to be the same. Berndt and Rappaport (2001) found, 
for example, from 1987 to 1999 for desktop PCs, the null hypothesis of 
adjacent- year equality of the characteristics parameters to be rejected in 
all but one case. For mobile PCs the null hypothesis of parameter stabil-
ity was rejected in eight of the twelve adjacent- year comparisons. Berndt 
and Rappaport (2001) preferred the use of hedonic imputation indexes if  
there was evidence of parameter instability. Pakes (2003), using quarterly 
data for hedonic regressions for desktop PCs over the period 1995 to 1999, 
rejected just about any hypothesis on the constancy of the coefficients. He 
also advocated hedonic imputation indexes on the grounds that “. . . since 
hedonic coefficients vary across periods it [the hedonic dummy approach] 
has no theoretical justifi cation.” Pakes (2003, 1593). The hedonic imputa-
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tion method is inherently more fl exible (in that it can deal with changes in 
purchasers’ valuations of characteristics over the periods being compared) 
than the hedonic dummy method and this is a big advantage for the HI 
method.

Note also that the difference between the two approaches has been found 
to depend on three change factors: the change in the mean characteris-
tics, relative variance- covariance characteristics matrix, and parameter esti-
mates. More specifi cally, it was found that the difference depends on the 
product of  such changes. As such, parameter instability by itself  need not by 
itself  be a cause for concern. Even if  parameters were unstable, the difference 
between the indexes may be compounded or mitigated by a small change in 
any of the other components.

Nevertheless, the essence of the HD method is that only one regression 
is run, with the data in both periods appearing as dependent variables and 
with the restriction that the characteristics are valued at common “prices” 
for the two periods. In this interpretation, HD is not as fl exible because of 
these restrictions. Why are these restrictions imposed? Perhaps for three 
reasons:

•  To conserve degrees of freedom.
•  To give an unambiguous estimate of the amount of price change going 

from period 0 to 1. Because the regression surfaces are parallel, we can 
measure the distance between the two surfaces at any characteristics 
point z and get the same estimate of log price change, which is not the 
case in the HI methods.

•  To minimize the infl uence of outliers, particularly in situations where 
degrees of freedom are small.

In view of the previous considerations, the advantages and disadvantages 
of the two methods can be seen: HI is “better” because it allows for chang-
ing characteristics prices over time; that is, it is more “fl exible” but at the 
cost of:

•  Using up more degrees of freedom.
•  Leading to a less reproducible estimate of overall price change between 

the two periods, since we have to condition on one or more “reasonable” 
z points to measure the distance between the two surfaces.

In practice, the last objection is not very serious; the Laspeyres and Paasche 
type estimates of price change are well established in index number theory, 
as is the idea that these equally valid estimates of price change should be 
averaged in order to come up with a single measure of price change.

Thus all things considered, we favor HI methods unless degrees of free-
dom are very limited.

Triplett (2004) recognized that extensive product differentiation with a 
high model turnover is an increasing feature of product markets. The moti-
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vation for the use of  hedonic regression techniques lies in the failure of 
the matched- models method to adequately deal with price measurement in 
this context. Schultze and Mackie (2002) argued that hedonic indexes were 
the most promising approach to measuring price changes for such product 
markets, but advised that further research into such methods was needed: in 
particular, under what conditions will HD and HI measures of price change 
be different? This chapter has provided answers to this question.

Appendix A

An Alternative Interpretation of the Hedonic 
Imputation Estimate of Log Price Change

In section 4.3, we derived an estimator for the logarithm of overall price 
change between the two periods, LPHI defi ned by equation (34), which we 
called the hedonic imputation estimate of the change in log prices going from 
period 0 to 1. We derived this estimator of price change following the method-
ology pioneered by Court (1939, 108); that is, individual prices in each period 
were quality adjusted using their characteristics vectors and the character-
istics prices obtained from one of the two hedonic regressions pertaining to 
the two periods under consideration, and then the resulting quality- adjusted 
prices were compared across the two periods. However, there is an alterna-
tive method for estimating price change across two periods when separate 
hedonic regressions are run for each period. In this second method, we calcu-
late the mean vector of characteristics that pertains to the models observed 
in period 0, say, and then calculate the distance between the two hedonic 
regressions at this mean characteristics point. This is called a Laspeyres- type 
measure of price change. Then we calculate the mean vector of characteristics 
that pertains to the models observed in period 1 and calculate the distance 
between the two hedonic regressions at this second mean characteristics 
point, leading to a Paasche- type measure of price change. Finally these two 
distances between the hedonic regression surfaces are averaged in order to 
obtain a fi nal measure of price change between the two periods. This is the 
methodology originally proposed by Griliches (1967) and Dhrymes (1971, 
111– 12). In this appendix, we show that the fi rst and second hedonic impu-
tation methods lead to the same overall estimate of price change.

We fi rst consider the unweighted hedonic imputation model that was 
described in section 4.3. Recall the notation used in section 4.3 where y0 was 
the N(0) dimensional vector of log model prices in period 0, y1 was the N(1) 
dimensional vector of log model prices in period 1 and Z t was the N(t) by K 
matrix of characteristics by model in period t for t � 0,1. Defi ne the sample 
average of the log prices in period t, yt∗, and the sample average vectors of 
model characteristics, zt∗, as follows:
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(A1) y0∗ � 
10

Ty0

�
N(0)

; y1∗ � 
11

Ty1

�
 N(1)

; z0∗ � 
10

TZ0

�
 N(0)

; z1∗ � 
11

TZ1

�
N(1)

.

Using defi nitions (A1), equations (28) and (29) in section 4.3 can be rewrit-
ten as follows:

(A2) y0∗ � 	0
∗ � z0∗T�0∗;

(A3) y1∗ � 	1
∗ � z1∗T�1∗.

For later reference, it can be seen that equations (A2) and (A3) imply 
the following expression for the difference in intercepts in the two hedonic 
regressions:

(A4) 	1
∗ � 	0

∗ � y1∗ � y0∗ � z1∗T�1∗ � z0∗T�0∗.

Now we are ready to defi ne some estimators of the distance between the 
two hedonic regression surfaces. We defi ne the Laspeyres- type measure of 
log price change between periods 0 and 1, LPL, and the Paasche- type measure 
of log price change, LPP, as follows:

(A5) LPL � 	1
∗ � z0∗T�1∗ � (	0

∗ � z0∗T�0∗);

(A6) LPP � 	1
∗ � z1∗T�1∗ � (	0

∗ � z1∗T�0∗).

It can be seen that equations (A5) and (A6) are both measures of  the 
distance between the two hedonic regression surfaces: the Laspeyres- type 
measure holds the characteristics vector constant at the average of the period 
0 levels, z0∗, while the Paasche- type measure holds the characteristics vector 
constant at the average of the period 1 levels, z1∗. Our fi nal measure of log 
price change is the arithmetic average of the Laspeyres-  and Paasche- type 
measures, which we call the Fisher type measure of log price change, LPF:

(A7) LPF � 
1
�
2

(LPL � LPP)

 � 
1
�
2

[	1
∗ � z0∗T�1∗ � (	0

∗ � z0∗T�0∗) � 	1
∗ � z1∗T�1∗ 

 � (	0
∗ � z1∗T�0∗)]  using (A6) and (A7)

 � 	1
∗ � 	0

∗ � 
1
�
2

(z0∗T � z1∗T)(�1∗ � �0∗)

 � y1∗ � y0∗ � z1∗T�1∗ � z0∗T�0∗ 

 � 
1
�
2

(z0∗T�1∗ � z0∗T�0∗ � z1∗T�1∗ � z1∗T�0∗) using (A4)

 � y1∗ � y0∗ � 
1
�
2

(z0∗T�1∗ � z0∗T�0∗ � z1∗T�1∗ � z1∗T�0∗)

 � y1∗ � y0∗ � 
1
�
2

(�1∗ � �0∗)T(z1∗ � z0∗)

 � LPHI,
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where LPHI was the hedonic imputation index defi ned by equation (34) in 
section 4.2. Thus, the two hedonic imputation methods for defi ning an esti-
mate of price change coincide in the unweighted case.27

Now consider the weighted hedonic imputation model that was described 
in section 4.5. The equally weighted sample averages of the log prices (y0∗ 
and y1∗) and of the model characteristics (the vectors z0∗ and z1∗) defi ned in 
equation (A1) are now replaced by the following expenditure share weighted 
averages:

(A8) y0∗ � s0Ty0; y1∗ � s1Ty1; z0∗ � s0TZ0; z1∗ � s1TZ1.

Using the new defi nitions in equation (A8), it can be seen that equations 
(61) and (62) in section 4.5 imply that equations (A2) and (A3) continue to 
hold so that (A4) also holds, using these new defi nitions. We can again defi ne 
the Laspeyres and Paasche type measures of log price change by equations 
(A5) and (A4) where we use the new hedonic regression estimates for the 
period 0 weighted regression, 	0

∗and �0∗, and for the period 1 weighted 
regression, 	1

∗ and �1∗, and the period 0 weighted average characteristics 
vector z0∗ for the Laspeyres measure LPL and the period 1 weighted average 
characteristics vector z1∗ for the Paasche measure LPP. Now use LPL and 
LPP to defi ne the Fisher measure LPF by the fi rst line in equation (A7) and 
again we can show that this Fisher measure is equal to the weighted hedonic 
imputation index LPWHI defi ned by equation (65).

Thus we have shown that two rather different looking approaches to hedo-
nic imputation indexes are equivalent.

Appendix B

A Method for Obtaining Approximate Standard Errors for the Hedonic 
Imputation Laspeyres and Paasche Measures of Log Price Change

We consider the unweighted case fi rst. Recall that the Laspeyres type hedo-
nic imputation measure of log price change was defi ned as

(A9) �L
∗ � �1

∗ � 	0
∗,

where �1
∗ and 	0

∗ are defi ned by equations (32) and (30), respectively. These 
last two equations can be rewritten as follows:

(A10) N(1)�1
∗ � 11

Ty1 � 11
TZ1�0∗;

(A11) N(0)	0
∗ � 10

Ty0 � 10
TZ0�0∗.

27. It can also be verifi ed that LPL is equal to 	1
∗ –  �0

∗ where �0
∗ was defi ned by equation (33) 

and LPP is equal to �∗
1 –  	∗

0 where �∗
1 was defi ned by equation (32).
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Recall also that the period 0 hedonic regression was written as equation 
(26) where 	0

∗ was the period 0 estimated log price level and �0∗ was the 
period 0 vector of least squares estimates for the characteristics prices. Now 
use these estimated period 0 regression coefficients to quality adjust the 
period 1 log prices in the vector y1. After subtracting these quality adjust-
ments from the vector of period 1 log prices y1, we are left with the period 1 
vector v1 of quality- adjusted prices, less the period 0 log price level defi ned 
as follows:

(A12) v1 � y1 � (11	0
∗ � Z1�0∗) � (y1 � Z1�0∗) � 11	0

∗.

Now run a least squares regression of the period 1 residual vector v1 on 
a constant term with coefficient �0. The resulting least squares estimator 
for �0 is:

(A13) �0
∗ � 

11
Tv1

�
 N(1)

 � 
11

T(y1 � Z1�0∗)
��

 N(1)
 � 

N(1)	0
∗

�
 N(1)

 using (A12)

 � �1
∗ � 	0

∗ using (A10)

 � �L
∗ using (A9).

Thus, the Laspeyres type hedonic imputation measure of log price change 
�L

∗ defi ned by equation (A9) is numerically equal to the least squares estima-
tor �0

∗ of  the constant term in a regression of period 1 quality- adjusted log 
prices v1 defi ned by equation (A12) on a constant and the standard error on 
this auxiliary regression coefficient can serve as an approximate standard 
error for the Laspeyres hedonic imputation measure of constant quality log 
price change over the two periods under consideration.28

The previous algebra can be repeated for the Paasche type hedonic impu-
tation measure of log price change, which was defi ned as

(A14) �P
∗ � 	1

∗ � �0
∗,

28. This is only an approximate standard error because it is conditional on period 0 estimated 
parameters, 	∗

0 and �∗
0, which are subject to some sampling uncertainty. If  we wanted to use the 

same methodology to obtain standard errors for the constant quality period 0 log price level, 	0, 
and the constant quality period 1 log price level, �1, then we would use the period 0 estimated 
characteristics prices �0∗ in order to form period 0 and 1 quality- adjusted log price vectors w0 
and w1, defi ned as wt � y t –  Z t�0∗ for t � 0,1. Now form two auxiliary regressions where w0 is 
regressed on a constant with coefficient 	0 and w1 is regressed on a constant with coefficient �1. 
The least squares estimators for 	0 and �1 turn out to be the 	0

∗ and �1
∗, defi ned by equations 

(A10) and (A11). The standard errors for these coefficients in the auxiliary regression can be 
used as approximate standard errors for the log price levels in the two periods. These standard 
errors are conditional on the estimated period 0 characteristics prices, �0∗. Of course, the 
original period 0 hedonic regression can be used in order to obtain an unconditional standard 
error for the period 0 log price level 	0.
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where 	1
∗ and �0

∗ are defi ned by equations (31) and (33), respectively. These 
last two equations can be rewritten as follows:

(A15) N(1)	1
∗ � 11

Ty1 � 11
TZ1�1∗.

(A16) N(0)�0
∗ � 10

Ty0 � 10
TZ0�1∗.

Recall also that the period 0 hedonic regression was written as equation 
(27), where 	1

∗ was the period 1 estimated log price level and �1∗ was the 
period 1 vector of least squares estimates for the characteristics prices. Now 
use these estimated period 1 regression coefficients to quality adjust the 
period 0 log prices in the vector y0. After subtracting these quality adjust-
ments from the vector of period 0 log prices y0, we are left with the period 0 
vector v0 of quality- adjusted prices, less the period 1 log price level defi ned 
as follows:

(A17) v0 � y0 � [10	1
∗ � Z0�1∗] � [y0 � Z0�1∗] � 10	1

∗.

Now run a least squares regression of the period 0 residual vector v0 on 
a constant term with coefficient �1. The resulting least squares estimator 
for �1 is:

(A18) �1
∗ � 

10
Tv0

�
N(0)

 � 
10

T(y0 � Z0�1∗)
��

 N(0)
 � 

N(0)	1
∗

�
 N(0)

 using (A17)

 � �0
∗ � 	1

∗ using (A16)

 � ��L
∗ using (A14).

Thus, the Paasche type hedonic imputation measure of log price change �P
∗ 

defi ned by equation (A14) is numerically equal to minus the least squares 
estimator �1

∗ of the constant term in a regression of period 0 quality- adjusted 
log prices v0 defi ned by equation (A17) on a constant and the standard error 
on this auxiliary regression coefficient can serve as an approximate standard 
error for the Paasche hedonic imputation measure of constant quality log 
price change over the two periods under consideration.

We leave the reader with the task of deriving the counterparts of these 
results to the case where we have weighted hedonic regressions.
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Comment Jan de Haan

Hedonic regression has now become one of the standard tools for statistical 
agencies to adjust their CPIs for quality changes in markets with a high turn-
over of differentiated models such as PCs. The authors address an impor-
tant question, namely the difference between “hedonic imputation indexes” 
and time dummy hedonic indexes, which are the two main approaches to 
estimating hedonic price indexes (in the academic literature). They provide 
a novel exposition of the factors underlying the difference between these 
approaches, both for the unweighted and the preferred expenditure- share 
weighted case. In particular, the authors derive three conditions under which 
the two approaches lead to identical results: constancy (over time) of the 
average characteristics, constancy of the estimated characteristics param-
eters (used in the imputation approach), and constancy of the characteristics 
variance- covariance matrix. As the authors rightly claim, the third condi-
tion is somewhat unanticipated. Apart from being a valuable contribution 
to the literature, the chapter seems highly relevant for the work of statisti-
cal agencies. However, the use of matrix algebra makes the exposition very 
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