31 research outputs found
Quantum Iterated Function Systems
Iterated functions system (IFS) is defined by specifying a set of functions
in a classical phase space, which act randomly on an initial point. In an
analogous way, we define a quantum iterated functions system (QIFS), where
functions act randomly with prescribed probabilities in the Hilbert space. In a
more general setting a QIFS consists of completely positive maps acting in the
space of density operators. We present exemplary classical IFSs, the invariant
measure of which exhibits fractal structure, and study properties of the
corresponding QIFSs and their invariant states.Comment: 12 pages, 1 figure include
A quantization procedure based on completely positive maps and Markov operators
We describe -limit sets of completely positive (CP) maps over
finite-dimensional spaces. In such sets and in its corresponding convex hulls,
CP maps present isometric behavior and the states contained in it commute with
each other. Motivated by these facts, we describe a quantization procedure
based on CP maps which are induced by Markov (transfer) operators. Classical
dynamics are described by an action over essentially bounded functions. A
non-expansive linear map, which depends on a choice of a probability measure,
is the centerpiece connecting phenomena over function and matrix spaces
Wehrl entropy, Lieb conjecture and entanglement monotones
We propose to quantify the entanglement of pure states of
bipartite quantum system by defining its Husimi distribution with respect to
coherent states. The Wehrl entropy is minimal if and only
if the pure state analyzed is separable. The excess of the Wehrl entropy is
shown to be equal to the subentropy of the mixed state obtained by partial
trace of the bipartite pure state. This quantity, as well as the generalized
(R{\'e}nyi) subentropies, are proved to be Schur--convex, so they are
entanglement monotones and may be used as alternative measures of entanglement
Highly symmetric POVMs and their informational power
We discuss the dependence of the Shannon entropy of normalized finite rank-1
POVMs on the choice of the input state, looking for the states that minimize
this quantity. To distinguish the class of measurements where the problem can
be solved analytically, we introduce the notion of highly symmetric POVMs and
classify them in dimension two (for qubits). In this case we prove that the
entropy is minimal, and hence the relative entropy (informational power) is
maximal, if and only if the input state is orthogonal to one of the states
constituting a POVM. The method used in the proof, employing the Michel theory
of critical points for group action, the Hermite interpolation and the
structure of invariant polynomials for unitary-antiunitary groups, can also be
applied in higher dimensions and for other entropy-like functions. The links
between entropy minimization and entropic uncertainty relations, the Wehrl
entropy and the quantum dynamical entropy are described.Comment: 40 pages, 3 figure
Bounds for periodic solutions of difference and differentia equations
The article contains no abstrac
Utility maximizing entropy and the second law of thermodynamics
Expected utility maximization problems in mathematical finance lead to a generalization of the classical definition of entropy. It is demonstrated that a necessary and sufficient condition for the second law of thermodynamics to operate is that any one of the generalized entropies should tend to its minimum value of zero