17,473 research outputs found

    Electromagnetic Energy, Absorption, and Casimir Forces. Inhomogeneous Dielectric Media

    Full text link
    A general, exact formula is derived for the expectation value of the electromagnetic energy density of an inhomogeneous absorbing and dispersive dielectric medium in thermal equilibrium, assuming that the medium is well approximated as a continuum. From this formula we obtain the formal expression for the Casimir force density. Unlike most previous approaches to Casimir effects in which absorption is either ignored or admitted implicitly through the required analytic properties of the permittivity, we include dissipation explicitly via the coupling of each dipole oscillator of the medium to a reservoir of harmonic oscillators. We obtain the energy density and the Casimir force density as a consequence of the van der Waals interactions of the oscillators and also from Poynting's theorem.Comment: 13 pages, no figures. Updated version with generalization to finite temperature and added example

    A Comment on Bonnor-Steadman Closed Timelike Curves

    Full text link
    The existence and stability closed timelike curves in a Bonnor-Ward spacetime without torsion line singularities is shown by exhibiting particular examples.Comment: 2 pages, RevTex, minor correction

    The Progenitors of Recent Core-Collapse Supernovae

    Get PDF
    We present the results of our analysis of Hubble Space Telescope (HST) and deep ground-based images to isolate the massive progenitor stars of the two recent core-collapse supernovae 2008 bk and 2008 cn. The identification of the progenitors is facilitated in one of these two cases by high-precision astrometry based on our HST imaging of SNe at late times

    On the Dichotomy between the Nodal and Antinodal Excitations in High-temperature Superconductors

    Full text link
    Angle-resolved photoemission data on optimally- and under-doped high temperature superconductors reveal a dichotomy between the nodal and antinodal electronic excitations. In this paper we propose an explanation of this unusual phenomenon by employing the coupling between the quasiparticle and the commensurate/incommensurate magnetic excitations.Comment: 11 pages, 9 figure

    The gravity of magnetic stresses and energy

    Full text link
    In the framework of designing laboratory tests of relativistic gravity, we investigate the gravitational field produced by the magnetic field of a solenoid. Observing this field might provide a mean of testing whether stresses gravitate as predicted by Einstein's theory. A previous study of this problem by Braginsky, Caves and Thorne predicted that the contribution to the gravitational field resulting from the stresses of the magnetic field and of the solenoid walls would cancel the gravitational field produced by the mass-energy of the magnetic field, resulting in a null magnetically-generated gravitational force outside the solenoid. They claim that this null result, once proved experimentally, would demonstrate the stress contribution to gravity. We show that this result is incorrect, as it arises from an incomplete analysis of the stresses, which neglects the axial stresses in the walls. Once the stresses are properly evaluated, we find that the gravitational field outside a long solenoid is in fact independent of Maxwell and material stresses, and it coincides with the newtonian field produced by the linear mass distribution equivalent to the density of magnetic energy stored in a unit length of the solenoid. We argue that the gravity of Maxwell stress can be directly measured in the vacuum region inside the solenoid, where the newtonian noise is absent in principle, and the gravity generated by Maxwell stresses is not screened by the negative gravity of magnetic-induced stresses in the solenoid walls.Comment: 10 pages, final version accepted for publication in PR
    corecore