1,315 research outputs found

    Exact density-functional potentials for time-dependent quasiparticles

    Full text link
    We calculate the exact Kohn-Sham potential that describes, within time-dependent density-functional theory, the propagation of an electron quasiparticle wavepacket of non-zero crystal momentum added to a ground-state model semiconductor. The potential is observed to have a highly nonlocal functional dependence on the charge density, in both space and time, giving rise to features entirely lacking in local or adiabatic approximations. The dependence of the non-equilibrium part of the Kohn-Sham electric field on the local current and charge density is identified as a key element of the correct Kohn-Sham functional.Comment: 4 pages, 3 figure

    Electron localisation in static and time-dependent one-dimensional model systems

    Get PDF
    Electron localization is the tendency of an electron in a many-body system to exclude other electrons from its vicinity. Using a new natural measure of localization based on the exact manyelectron wavefunction, we find that localization can vary considerably between different ground-state systems, and can also be strongly disrupted, as a function of time, when a system is driven by an applied electric field. We use our new measure to assess the well-known electron localization function (ELF), both in its approximate single-particle form (often applied within density-functional theory) and its full many-particle form. The full ELF always gives an excellent description of localization, but the approximate ELF fails in time-dependent situations, even when the exact Kohn-Sham orbitals are employed.Comment: 7 pages, 4 figure

    The potential of liquid hydrogen for long range aircraft propulsion

    Get PDF
    The growth of aviation needed to cater for the needs of society might be undermined by restrictions resulting from the environmental implications of air traffic. Hydrogen could provide an excellent alternative to ensure a sustainable future for aviation. Several challenges remain to be addressed though before its adoption can become reality. The liquid hydrogen tanks are one of the areas where considerable research is needed. Further insight into unusual restrictions on aircraft classes that would be thought of as ideal candidates for hydrogen is also required. Hydrogen fueled very large long range transport aircraft for instance suffer from the 80 m airport box constraint which leads to a strong decrease in performance compared to other aircraft classes. In this work 3 main tools are developed to look into some of these issues. An aircraft conceptual design tool has been set up to allow a comparison between kerosene and hydrogen on a common and hence fair basis. An engine performance assessment routine is also developed to allow the coupling of the design of engine and aircraft as one integrated system. As the link between both subsystems is the liquid hydrogen tank, a detailed design method for the tanks has also been created. With these tools it has been shown that the gravimetric efficiency for large transport aircraft varies by only a few percent for a wide range of fuel masses and aircraft diameters with values in the order of 76to 80%. The performance of the long range transport aircraft itself however varies strongly from one class to another. For aircraft with a passenger load around 400 passengers, takeoff weight reductions around 25% can be obtained for similar operating empty weights and fuel weights of about 30% of the equivalent kerosene fuel weight. For 550 passenger aircraft however, the takeoff weight reduction reduces strongly due to the need for a triple deck fuselage and the resulting increase in fuselage mass. Whereas for the first category of aircraft, a 3 to 6 times higher fuel price per energy content can be afforded for similar direct operating costs, this cost advantage is reduced by about a third for the 550 passenger aircraft. A twin fuselage configuration alleviates the geometrical restrictions and restores the potential for an aircraft family but does not yield strong weight reductions. In a subsequent study, the implications of unconventional engine cycles as well as drag reduction resulting from natural laminar flow through surface cooling should be assessed using the developed set of tools as this will reveal the full potential of hydrogen as an aviation fuel.EThOS - Electronic Theses Online ServiceGBUnited Kingdo

    A Computational Study of a Novel Turbine Rotor Partial Shroud

    Get PDF
    The over tip leakage (OTL) flow that exists between the stationary casing and the rotor tip of a shroudless HP turbine remains a major source of loss of performance for modern aero gas turbines. To-date the principal approaches to reducing OTL loss have been to minimise the clearance gap and/ or apply a rotating shroud to the rotor. Tip clearance control systems continue to improve, but a practical limit on tip gap remains. A rotating shroud is highly effective but increases the rotor weight forcing it to run more slowly, thus increasing other aerodynamic losses. Additional means of reducing OTL loss are still needed. Partial shrouds (winglets) have been tried but none have entered commercial service to-date. This paper presents a novel design of partial shroud derived from a review of past research. The (arbitrary) objectives were to halve the OTL loss of a shroudless rotor, at less than half the size of a full shroud. This design has been analysed using a steady flow RANS CFD code to qualitatively determine its benefits. Attention has been paid to its validation and a realistic determination of its capabilities. The winglet is predicted to significantly improve the efficiency of a highly loaded HP turbine, by 1.2 -1.8% at 2% tip gap/ span. A detailed understanding of the flow field shows this to be credible
    • …
    corecore