115 research outputs found

    Identification of MOR-positive B cell as possible innovative biomarker (Mu lympho-marker) for chronic pain diagnosis in patients with fibromyalgia and osteoarthritis diseases

    Get PDF
    Fibromyalgia (FM) diagnosis follows the American College of Rheumatology (ACR) criteria, based on clinical evaluation and written questionnaires without any objective diagnostic tool. The lack of specific biomarkers is a tragic aspect for FM and chronic pain diseases in general. Interestingly, the endogenous opioid system is close to the immune one because of the expression of opioid receptors on lymphocytes membrane. Here we analyzed the role of the Mu opioid receptor on B lymphocytes as a specific biomarker for FM and osteoarthritis (OA) patients. We enrolled three groups of females: FM patients, OA patients (chronic pain control group) and healthy subjects (pain-free negative control group). We collected blood samples to apply immunophenotyping analysis. Written tests were administrated for psychological analysis. Data were statistically analyzed. Final results showed that the percentage of Mu-positive B cells were statistically lower in FM and OA patients than in pain-free subjects. A low expression of Mu-positive B cell was not associated with the psychological characteristics investigated. In conclusion, here we propose the percentage of Mu-positive B cells as a biological marker for an objective diagnosis of chronic pain suffering patients, also contributing to the legitimacy of FM as a truly painful disease

    Italian Oncological Pain Survey (IOPS) A Multicentre Italian Study of Breakthrough Pain Performed in Different Settings

    Get PDF
    Objective: A survey of breakthrough pain (BTP) was performed in five palliative care units (PCU), seven oncology departments (ONC), and nine pain clinics (OPC). Methods: A standard algorithm was used to confirm the diagnosis of BTP of patients refereed to different settings. Results: 1,412 evaluable cancer patients were enrolled. 53.9% were males and the mean age was 63.7±13.1 years. The mean intensity of background pain was 2.8±0.73. Patients reported 2.4±1.1 BTP episodes/day with a mean intensity of 7.37±1.28. 80.6% patients reported that the BTP had a significant negative impact in everyday life. The majority of patients reported a fast onset of BTP, which was predictable in 50.7% of cases, while BTP with a gradual onset (>10 min) was less predictable (29%) (P=0.001). PCU patients were older, had lower Karnofsky levels, a lower number of BTP episodes/day, a slow onset of BTP onset, and a less predictable BTP. Cancer diagnosis was performed a mean of 23.5 months (SD±32.8) before the assessment. The mean duration of background pain was 3.5 months (SD±3.5), and the mean duration of any analgesic treatment was 2.5 months (SD±3). BTP started a mean of 2.2 months (SD±1.9) before the assessment. Characteristics of BTP were influenced by the course of disease, as well as the duration of background pain and initiation of BTP. Most patients took rapid onset opioids and were satisfied with the treatment. BTP diagnosis was prevalently made by ONC and OPC physicians, and rarely by GPs. Conclusion: This survey performed by an Italian observatory expert review group, has confirmed that the BTP represents a clinically relevant condition with a negative impact on the patient’s quality of life. BTP was detected in all settings involved. A number of factors are associated with the BTP. Also factors regarding the course of disease and setting of care have been assessed. This information may help in stratifying patients or predicting the risk of development of BTP with specific characteristics

    Measurement of vector boson production cross sections and their ratios using pp collisions at s=13.6 TeV with the ATLAS detector

    Get PDF

    Beam-induced backgrounds measured in the ATLAS detector during local gas injection into the LHC beam vacuum

    Get PDF

    Measurement of the Bs0 → μμ effective lifetime with the ATLAS detector

    Get PDF
    This paper reports the frst ATLAS measurement of the B0 s → µµ efective lifetime. The measurement is based on the data collected in 2015–2016, amounting to 26.3 fb−1 of 13 TeV LHC proton-proton collisions. The proper decay-time distribution of 58 ± 13 background-subtracted signal candidates is ft with simulated signal templates parameterised as a function of the B0 s efective lifetime, with statistical uncertainties extracted through a Neyman construction. The resulting efective measurement of the B0 s → µµ lifetime is 0.99+0.42 −0.07 (stat.) ± 0.17 (syst.) ps and it is found to be consistent with the Standard Model

    Calibration of a soft secondary vertex tagger using proton-proton collisions at √s = 13 TeV with the ATLAS detector

    Get PDF
    Several processes studied by the ATLAS experiment at the Large Hadron Collider produce low-momentum b-flavored hadrons in the final state. This paper describes the calibration of a dedicated tagging algorithm that identifies b-flavored hadrons outside of hadronic jets by reconstructing the soft secondary vertices originating from their decays. The calibration is based on a proton-proton collision dataset at a center-of-mass energy of 13 TeV corresponding to an integrated luminosity of 140  fb−1. Scale factors used to correct the algorithm’s performance in simulated events are extracted for the b-tagging efficiency and the mistag rate of the algorithm using a data sample enriched in tt¯ events. Several orthogonal measurement regions are defined, binned as a function of the multiplicities of soft secondary vertices and jets containing a b-flavored hadron in the event. The mistag rate scale factors are estimated separately for events with low and high average numbers of interactions per bunch crossing. The results, which are derived from events with low missing transverse momentum, are successfully validated in a phase space characterized by high missing transverse momentum and therefore are applicable to new physics searches carried out in either phase space regime

    Measurements of electroweak W±Z boson pair production in association with two jets in pp collisions at √s = 13 TeV with the ATLAS detector

    Get PDF
    Measurements of integrated and differential cross-sections for electroweak W±Z production in association with two jets (W±Zjj) in proton-proton collisions are presented. The data collected by the ATLAS detector at the Large Hadron Collider from 2015 to 2018 at a centre-of-mass energy of √ s = 13 TeV are used, corresponding to an integrated luminosity of 140 fb−1 . The W±Zjj candidate events are reconstructed using leptonic decay modes of the gauge bosons. Events containing three identified leptons, either electrons or muons, and two jets are selected. Processes involving pure electroweak W±Zjj production at Born level are separated from W±Zjj production involving a strong coupling. The measured integrated fiducial cross-section of electroweak W±Zjj production per lepton flavour is σW Zjj−EW→ℓ ′ νℓℓjj = 0.368 ± 0.037 (stat.) ± 0.059 (syst.) ± 0.003 (lumi.) fb, where ℓ and ℓ ′ are either an electron or a muon. Respective cross-sections of electroweak and strong W±Zjj production are measured separately for events with exactly two jets or with more than two jets, and in three bins of the invariant mass of the two jets. The inclusive W±Zjj production cross-section, without separating electroweak and strong production, is also measured to be σW Zjj→ℓ ′ νℓℓjj = 1.462 ± 0.063 (stat.) ± 0.118 (syst.) ± 0.012 (lumi.) fb, per lepton flavour. The inclusive W±Zjj production cross-section is measured differentially for several kinematic observables. Finally, the measurements are used to constrain anomalous quartic gauge couplings by extracting 95% confidence level intervals on dimension-8 operators
    corecore