370 research outputs found

    Glucose availability and sensitivity to anoxia of isolated rat peripheral nerve

    Get PDF
    The contrast between resistance to ischemia and ischemic lesions in peripheral nerves of diabetic patients was explored by in vitro experiments. Isolated and desheathed rat peroneal nerves were incubated in the following solutions with different glucose availability: 1) 25 mM glucose, 2) 2.5 mM glucose, and 3) 2.5 mM glucose plus 10 mM 2-deoxy-D-glucose. Additionally, the buffering power of all of these solutions was modified. Compound nerve action potential (CNAP), extracellular pH, and extracellular potassium activity (aKe) were measured simultaneously before, during, and after a period of 30 min of anoxia. An increase in glucose availability led to a slower decline in CNAP and to a smaller rise in aKe during anoxia. This resistance to anoxia was accompanied by an enhanced extracellular acidosis. Postanoxic recovery of CNAP was always complete in 25 mM HCO3(-)-buffered solutions. In 5 mM HCO3- and in HCO3(-)-free solutions, however, nerves incubated in 25 mM glucose did not recover functionally after anoxia, whereas nerves bathed in solutions 2 or 3 showed a complete restitution of CNAP. We conclude that high glucose availability and low PO2 in the combination with decreased buffering power and/or inhibition of HCO3(-)-dependent pH regulation mechanisms may damage peripheral mammalian nerves due to a pronounced intracellular acidosis

    Sticking under wet conditions: the remarkable attachment abilities of the torrent frog, staurois guttatus

    Get PDF
    Tree frogs climb smooth surfaces utilising capillary forces arising from an air-fluid interface around their toe pads, whereas torrent frogs are able to climb in wet environments near waterfalls where the integrity of the meniscus is at risk. This study compares the adhesive capabilities of a torrent frog to a tree frog, investigating possible adaptations for adhesion under wet conditions. We challenged both frog species to cling to a platform which could be tilted from the horizontal to an upside-down orientation, testing the frogs on different levels of roughness and water flow. On dry, smooth surfaces, both frog species stayed attached to overhanging slopes equally well. In contrast, under both low and high flow rate conditions, the torrent frogs performed significantly better, even adhering under conditions where their toe pads were submerged in water, abolishing the meniscus that underlies capillarity. Using a transparent platform where areas of contact are illuminated, we measured the contact area of frogs during platform rotation under dry conditions. Both frog species not only used the contact area of their pads to adhere, but also large parts of their belly and thigh skin. In the tree frogs, the belly and thighs often detached on steeper slopes, whereas the torrent frogs increased the use of these areas as the slope angle increased. Probing small areas of the different skin parts with a force transducer revealed that forces declined significantly in wet conditions, with only minor differences between the frog species. The superior abilities of the torrent frogs were thus due to the large contact area they used on steep, overhanging surfaces. SEM images revealed slightly elongated cells in the periphery of the toe pads in the torrent frogs, with straightened channels in between them which could facilitate drainage of excess fluid underneath the pad

    Glutathione accelerates sodium channel inactivation in excised rat axonal membrane patches

    Get PDF
    The effects of glutathione were studied on the gating behaviour of sodium channels in membrane patches of rat axons. Depolarizing pulses from –120 to –40 mV elicited sodium currents of up to 500 pA, indicating the simultaneous activation of up to 250 sodium channels. Inactivation of these channels in the excised, inside-out configuration was fitted by two time constants ( h1=0.81 ms; h2= 5.03 ms) and open time histograms at 0 mV revealed a biexponential distribution of channel openings ( short=0.28 ms; long=3.68 ms). Both, the slow time constant of inactivation and the long lasting single channel openings disappeared after addition of the reducing agent glutathione (2–5 mM) to the bathing solution. Sodium channels of excised patches with glutathione present on the cytoplasmatic face of the membrane had inactivation kinetics similar to channels recorded in the cell-attached configuration. These observations indicate that redox processes may contribute to the gating of axonal sodium channels

    Effects of guanidine on synaptic transmission in the spinal cord of the frog

    Get PDF
    The effects of guanidine on motoneurons of the isolated frog spinal cord were studied by adding the drug to the solution bathing the cord during intracellular recording. Guanidine (5·10–4 M) did not alter the membrane potential of motoneurons. The main effect was a marked increase of the amplitudes and frequencies of small spontaneously occurring inhibitory postsynaptic potentials. The hyperpolarizing component of postsynaptic potentials evoked by stimulation of dorsal roots was also enhanced by guanidine. Higher concentrations of guanidine (5·10–3 M) resulted in a very large and irreversible increase of the small spontaneously occurring inhibitory potentials, which now appeared in a regular, rhythmic pattern. The effects of guanidine could easily be blocked by increasing the magnesium ions (15 mM) in the bath solution. These results indicate that guanidine facilitates the release of an inhibitory transmitter in afferent terminals of the frog spinal cord either by a direct action on these terminals or indirectly by an action on nerve endings impinging on inhibitory interneurons

    Magnetic order in orbital models of the iron pnictides

    Full text link
    We examine the appearance of the experimentally-observed stripe spin-density-wave magnetic order in five different orbital models of the iron pnictide parent compounds. A restricted mean-field ansatz is used to determine the magnetic phase diagram of each model. Using the random phase approximation, we then check this phase diagram by evaluating the static spin susceptibility in the paramagnetic state close to the mean-field phase boundaries. The momenta for which the susceptibility is peaked indicate in an unbiased way the actual ordering vector of the nearby mean-field state. The dominant orbitally resolved contributions to the spin susceptibility are also examined to determine the origin of the magnetic instability. We find that the observed stripe magnetic order is possible in four of the models, but it is extremely sensitive to the degree of the nesting between the electron and hole Fermi pockets. In the more realistic five-orbital models, this order competes with a strong-coupling incommensurate state which appears to be controlled by details of the electronic structure below the Fermi energy. We conclude by discussing the implications of our work for the origin of the magnetic order in the pnictides.Comment: 19 pages, 19 figures; published version, typos corrected, references adde

    Presynaptic actions of 4-Aminopyridine and γ-aminobutyric acid on rat sympathetic ganglia in vitro

    Get PDF
    Responses to bath-applications of 4-aminopyridine (4-AP) and -aminobutyric acid (GABA) were recorded intracellularly from neurones in the rat isolated superior cervical ganglion. 4-aminopyridine (0.1–1.0 mmol/l) usually induced spontaneous action potentials and excitatory postsynaptic potentials (EPSPs), which were blocked by hexamethonium. Membrane potential was unchanged; spike duration was slightly increased. Vagus nerve B-and C-fibre potentials were prolonged. In 4-AP solution (0.1–0.3 mmol/l), GABA (0.1 mmol/l), 3-aminopropanesulphonic acid or muscimol evoked bursts of spikes and EPSPs in addition to a neuronal depolarization. These bursts, which were not elicited by glycine, glutamate, taurine or (±)-baclofen, were completely antagonised by hexamethonium, tetrodotoxin or bicuculline methochloride. It is concluded that: (a) 4-AP has a potent presynaptic action on sympathetic ganglia; (b) presynaptic actions of GABA can be recorded postsynaptically in the presence of 4-AP; and (c) the presynaptic GABA-receptors revealed in this condition are similar to those on the postsynaptic membrane

    Electronic properties of LaOFFeAs in the normal state probed by NMR/NQR

    Full text link
    We report 139La, 57Fe and 75As nuclear magnetic resonance (NMR) and nuclear quadrupole resonance (NQR) measurements on powders of the new LaO1-xFxFeAs superconductor for x = 0 and x = 0.1 at temperatures up to 480 K, and compare our measured NQR spectra with local density approximation (LDA) calculations. For all three nuclei in the x = 0.1 material, it is found that the local Knight shift increases monotonically with an increase in temperature, and scales with the macroscopic susceptibility, suggesting a single magnetic degree of freedom. Surprisingly, the spin lattice relaxation rates for all nuclei also scale with one another, despite the fact that the form factors for each site sample different regions of q-space. This result suggests a lack of any q-space structure in the dynamical spin susceptibility that might be expected in the presence of antiferromagnetic correlations. Rather, our results are more compatible with simple quasi-particle scattering. Furthermore, we find that the increase in the electric field gradient at the As cannot be accounted for by LDA calculations, suggesting that structural changes, in particular the position of the As in the unit cell, dominate the NQR response.Comment: 17 pages, 6 figure

    Multimodal Communication in a Noisy Environment: A Case Study of the Bornean Rock Frog Staurois parvus

    Get PDF
    High background noise is an impediment to signal detection and perception. We report the use of multiple solutions to improve signal perception in the acoustic and visual modality by the Bornean rock frog, Staurois parvus. We discovered that vocal communication was not impaired by continuous abiotic background noise characterised by fast-flowing water. Males modified amplitude, pitch, repetition rate and duration of notes within their advertisement call. The difference in sound pressure between advertisement calls and background noise at the call dominant frequency of 5578 Hz was 8 dB, a difference sufficient for receiver detection. In addition, males used several visual signals to communicate with conspecifics with foot flagging and foot flashing being the most common and conspicuous visual displays, followed by arm waving, upright posture, crouching, and an open-mouth display. We used acoustic playback experiments to test the efficacy-based alerting signal hypothesis of multimodal communication. In support of the alerting hypothesis, we found that acoustic signals and foot flagging are functionally linked with advertisement calling preceding foot flagging. We conclude that S. parvus has solved the problem of continuous broadband low-frequency noise by both modifying its advertisement call in multiple ways and by using numerous visual signals. This is the first example of a frog using multiple acoustic and visual solutions to communicate in an environment characterised by continuous noise

    The effect of internal pressure on the tetragonal to monoclinic structural phase transition in ReOFeAs: the case of NdOFeAs

    Full text link
    We report the temperature dependent x-ray powder diffraction of the quaternary compound NdOFeAs (also called NdFeAsO) in the range between 300 K and 95 K. We have detected the structural phase transition from the tetragonal phase, with P4/nmm space group, to the orthorhombic or monoclinic phase, with Cmma or P112/a1 (or P2/c) space group, over a broad temperature range from 150 K to 120 K, centered at T0 ~137 K. Therefore the temperature of this structural phase transition is strongly reduced, by about ~30K, by increasing the internal chemical pressure going from LaOFeAs to NdOFeAs. In contrast the superconducting critical temperature increases from 27 K to 51 K going from LaOFeAs to NdOFeAs doped samples. This result shows that the normal striped orthorhombic Cmma phase competes with the superconducting tetragonal phase. Therefore by controlling the internal chemical pressure in new materials it should be possible to push toward zero the critical temperature T0 of the structural phase transition, giving the striped phase, in order to get superconductors with higher Tc.Comment: 9 pages, 3 figure

    Angular dependence of resistivity in the superconducting state of NdFeAsO0.82_{0.82}F0.18_{0.18} single crystals

    Full text link
    We report the results of angle dependent resistivity of NdFeAsO0.82_{0.82}F0.18_{0.18} single crystals in the superconducting state. By doing the scaling of resistivity within the frame of the anisotropic Ginzburg-Landau theory, it is found that the angle dependent resistivity measured under different magnetic fields at a certain temperature can be collapsed onto one curve. As a scaling parameter, the anisotropy Γ\Gamma can be determined for different temperatures. It is found that Γ(T)\Gamma(T) increases slowly with decreasing temperature, varying from Γ\Gamma \simeq 5.48 at T=50 K to Γ\Gamma \simeq 6.24 at T=44 K. This temperature dependence can be understood within the picture of multi-band superconductivity.Comment: 7 pages, 4 figure
    corecore