51 research outputs found

    Modeling the Subsurface Structure of Sunspots

    Get PDF
    While sunspots are easily observed at the solar surface, determining their subsurface structure is not trivial. There are two main hypotheses for the subsurface structure of sunspots: the monolithic model and the cluster model. Local helioseismology is the only means by which we can investigate subphotospheric structure. However, as current linear inversion techniques do not yet allow helioseismology to probe the internal structure with sufficient confidence to distinguish between the monolith and cluster models, the development of physically realistic sunspot models are a priority for helioseismologists. This is because they are not only important indicators of the variety of physical effects that may influence helioseismic inferences in active regions, but they also enable detailed assessments of the validity of helioseismic interpretations through numerical forward modeling. In this paper, we provide a critical review of the existing sunspot models and an overview of numerical methods employed to model wave propagation through model sunspots. We then carry out an helioseismic analysis of the sunspot in Active Region 9787 and address the serious inconsistencies uncovered by \citeauthor{gizonetal2009}~(\citeyear{gizonetal2009,gizonetal2009a}). We find that this sunspot is most probably associated with a shallow, positive wave-speed perturbation (unlike the traditional two-layer model) and that travel-time measurements are consistent with a horizontal outflow in the surrounding moat.Comment: 73 pages, 19 figures, accepted by Solar Physic

    Magnetic resonance imaging of anterior cruciate ligament rupture

    Get PDF
    BACKGROUND: Magnetic resonance (MR) imaging is a useful diagnostic tool for the assessment of knee joint injury. Anterior cruciate ligament repair is a commonly performed orthopaedic procedure. This paper examines the concordance between MR imaging and arthroscopic findings. METHODS: Between February, 1996 and February, 1998, 48 patients who underwent magnetic resonance (MR) imaging of the knee were reported to have complete tears of the anterior cruciate ligament (ACL). Of the 48 patients, 36 were male, and 12 female. The average age was 27 years (range: 15 to 45). Operative reconstruction using a patellar bone-tendon-bone autograft was arranged for each patient, and an arthroscopic examination was performed to confirm the diagnosis immediately prior to reconstructive surgery. RESULTS: In 16 of the 48 patients, reconstructive surgery was cancelled when incomplete lesions were noted during arthroscopy, making reconstructive surgery unnecessary. The remaining 32 patients were found to have complete tears of the ACL, and therefore underwent reconstructive surgery. Using arthroscopy as an independent, reliable reference standard for ACL tear diagnosis, the reliability of MR imaging was evaluated. The true positive rate for complete ACL tear diagnosis with MR imaging was 67%, making the possibility of a false-positive report of "complete ACL tear" inevitable with MR imaging. CONCLUSIONS: Since conservative treatment is sufficient for incomplete ACL tears, the decision to undertake ACL reconstruction should not be based on MR findings alone

    Sunspots: from small-scale inhomogeneities towards a global theory

    Full text link
    The penumbra of a sunspot is a fascinating phenomenon featuring complex velocity and magnetic fields. It challenges both our understanding of radiative magneto-convection and our means to measure and derive the actual geometry of the magnetic and velocity fields. In this contribution we attempt to summarize the present state-of-the-art from an observational and a theoretical perspective.Comment: Accepted for publication in Space Science Review

    Guidelines for the use and interpretation of assays for monitoring autophagy (4th edition)

    Get PDF

    Guidelines for the use and interpretation of assays for monitoring autophagy (4th edition)1.

    Get PDF
    In 2008, we published the first set of guidelines for standardizing research in autophagy. Since then, this topic has received increasing attention, and many scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Thus, it is important to formulate on a regular basis updated guidelines for monitoring autophagy in different organisms. Despite numerous reviews, there continues to be confusion regarding acceptable methods to evaluate autophagy, especially in multicellular eukaryotes. Here, we present a set of guidelines for investigators to select and interpret methods to examine autophagy and related processes, and for reviewers to provide realistic and reasonable critiques of reports that are focused on these processes. These guidelines are not meant to be a dogmatic set of rules, because the appropriateness of any assay largely depends on the question being asked and the system being used. Moreover, no individual assay is perfect for every situation, calling for the use of multiple techniques to properly monitor autophagy in each experimental setting. Finally, several core components of the autophagy machinery have been implicated in distinct autophagic processes (canonical and noncanonical autophagy), implying that genetic approaches to block autophagy should rely on targeting two or more autophagy-related genes that ideally participate in distinct steps of the pathway. Along similar lines, because multiple proteins involved in autophagy also regulate other cellular pathways including apoptosis, not all of them can be used as a specific marker for bona fide autophagic responses. Here, we critically discuss current methods of assessing autophagy and the information they can, or cannot, provide. Our ultimate goal is to encourage intellectual and technical innovation in the field

    The response of plant community diversity to alien invasion: evidence from a sand dune time series

    Get PDF
    This study examines the process of invasion of coastal dunes in north-eastern Italy along a 60-year time series considering alien attributes (origin, residence time, invasive status, and growth form strategy) and habitat properties (species richness, diversity and evenness, proportion of aliens, and proportion of focal species). Vegetation changes through time were investigated in four sandy coastal habitats, using a fine-scale diachronic approach that compared vegetation data collected by use of the same procedure, in four time periods, from the 1950s to 2011. Our analysis revealed an overall significant decline of species richness over the last six decades. Further, both the average number of species per plot and the mean focal species proportion were proved to be negatively affected by the increasing proportion of alien species at plot level. The severity of the impact, however, was found to be determined by a combination of species attributes, habitat properties, and human disturbance suggesting that alien species should be referred to as ‘‘passengers’’ and not as ‘‘drivers’’ of ecosystem change. Passenger alien species are those which take advantage of disturbances or other changes to which they are adapted but that lead to a decline in native biodiversity. Their spread is facilitated by widespread anthropogenic environmental alterations, which create new, suitable habitats, and ensure human-assisted dispersal, reducing the distinctiveness of plant communities and inducing a process of biotic homogenization
    • 

    corecore