43 research outputs found

    Advances in Engine Test Capabilities at the NASA Glenn Research Center's Propulsion Systems Laboratory

    Get PDF
    The Propulsion Systems Laboratory at the National Aeronautics and Space Administration (NASA) Glenn Research Center is one of the premier U.S. facilities for research on advanced aeropropulsion systems. The facility can simulate a wide range of altitude and Mach number conditions while supplying the aeropropulsion system with all the support services necessary to operate at those conditions. Test data are recorded on a combination of steady-state and highspeed data-acquisition systems. Recently a number of upgrades were made to the facility to meet demanding new requirements for the latest aeropropulsion concepts and to improve operational efficiency. Improvements were made to data-acquisition systems, facility and engine-control systems, test-condition simulation systems, video capture and display capabilities, and personnel training procedures. This paper discusses the facility s capabilities, recent upgrades, and planned future improvements

    Isolation, crystallization, and investigation of ribosomal protein S8 complexed with specific fragments of rRNA of bacterial or archaeal origin. Biochemistry 66

    Get PDF
    Study of the nature of protein-rRNA complexes is a topical problem of modern molecular biology. Structural studies of rRNA-protein complexes are the most direct and precise method of analysis of these interactions. Because ribosomal proteins are most conservative during evolution, their complexes with specific RNA fragments provide an interesting model for studying RNA-protein interactions. Ribosomal protein S8 from E. coli plays a key role in assembling the small ribosomal subunit The major region of protein S8 binding on 16S rRNA was determined by partial hydrolysis with restric tion endonucleases The binding sites of protein S8 on 16S rRNA are similar in E. coli and T. thermophilus. It was shown that ACCELERATED PUBLICATION 0006 2979/01/6609 0948$25.00 ©2001 MAIK "Nauka / Interperiodica" * To whom correspondence should be addressed. Vol. 66, No. 9, 2001, pp. 948 953. Translated from Biokhimiya, Vol. 66, No. 9, 2001, pp. 1165 1171. Original Russian Text Copyright © 2001 Abstract-The core ribosomal protein S8 binds to the central domain of 16S rRNA independently of other ribosomal proteins and is required for assembling the 30S subunit. It has been shown with E. coli ribosomes that a short rRNA fragment restrict ed by nucleotides 588 602 and 636 651 is sufficient for strong and specific protein S8 binding. In this work, we studied the complexes formed by ribosomal protein S8 from Thermus thermophilus and Methanococcus jannaschii with short rRNA frag ments isolated from the same organisms. The dissociation constants of the complexes of protein S8 with rRNA fragments were determined. Based on the results of binding experiments, rRNA fragments of different length were designed and syn thesized in preparative amounts in vitro using T7 RNA polymerase. Stable S8-RNA complexes were crystallized. Crystals were obtained both for homologous bacterial and archaeal complexes and for hybrid complexes of archaeal protein with bac terial rRNA. Crystals of the complex of protein S8 from M. jannaschii with the 37 nucleotide rRNA fragment from the same organism suitable for X ray analysis were obtained

    Stability of the ‘L12 stalk’ in ribosomes from mesophilic and (hyper)thermophilic Archaea and Bacteria

    Get PDF
    The ribosomal stalk complex, consisting of one molecule of L10 and four or six molecules of L12, is attached to 23S rRNA via protein L10. This complex forms the so-called ‘L12 stalk’ on the 50S ribosomal subunit. Ribosomal protein L11 binds to the same region of 23S rRNA and is located at the base of the ‘L12 stalk’. The ‘L12 stalk’ plays a key role in the interaction of the ribosome with translation factors. In this study stalk complexes from mesophilic and (hyper)thermophilic species of the archaeal genus Methanococcus and from the Archaeon Sulfolobus solfataricus, as well as from the Bacteria Escherichia coli, Geobacillus stearothermophilus and Thermus thermophilus, were overproduced in E.coli and purified under non-denaturing conditions. Using filter-binding assays the affinities of the archaeal and bacterial complexes to their specific 23S rRNA target site were analyzed at different pH, ionic strength and temperature. Affinities of both archaeal and bacterial complexes for 23S rRNA vary by more than two orders of magnitude, correlating very well with the growth temperatures of the organisms. A cooperative effect of binding to 23S rRNA of protein L11 and the L10/L12(4) complex from mesophilic and thermophilic Archaea was shown to be temperature-dependent

    Hepatocellular carcinoma in patients with autoimmune hepatitis

    No full text
    AIM: To evaluate and confirm the low incidence of hepatocellular carcinoma (HCC) in patients with autoimmune hepatitis (AIH). At present only very few cases of HCC in patients with AIH and definite exclusion of chronic viral hepatitis have been published, suggesting that HCC due to AIH is rare
    corecore