1,441 research outputs found

    Characterizing Quantum-Dot Blinking Using Noise Power Spectra

    Full text link
    Fluctuations in the fluorescence from macroscopic ensembles of colloidal semiconductor quantum dots have the spectral form of 1/f noise. The measured power spectral density reflects the fluorescence intermittency of individual dots with power-law distributions of "on" and "off" times, and can thus serve as a simple method for characterizing such blinking behavior

    Letter from E. W. Pelton to John Muir, 1863 Mar 22

    Get PDF
    Prairie du Chin Mar 22/63 3 - 30 PM Friend John There is no very partic- -ular change in Mrs Peltons case I think on the whole she has been more comfortable since my return from Madison than [illegible] you stay [illegible] But at times she is very bad, and seems to suffer greatly Her life is gradually ebling out [illegible]ful that I must surely soon past with her - that there is no [illegible] for her in this world She appeared much interested in the [illegible] wanted [me?] to bring them in and pick out the [illegible] ones Which I did, and file a salt sack with them, and put them away for her. As yet she has eaten but a few [meals?], and I fear she will eat very few more. She is having an uncomfortable afternoon, though getting a little [easier?] now. She has spoken your name many times in the wandering of her mind Since you were here she continues to have frequent fever, running very high some of the rime night & day Mrs Bassett is here with us. Yours Truly E [W?] Pelton 191 0032

    Use of ERTS-1 data in the educational and applied research programs of agricultural extension

    Get PDF
    There are no author-identified significant results in this report

    Theory and experiment of entanglement in a quasi-phase-matched two-crystal source

    Full text link
    We report new results regarding a source of polarization entangled photon-pairs created by the process of spontaneous parametric downconversion in two orthogonally oriented, periodically poled, bulk KTiOPO4 crystals (PPKTP). The source emits light colinearly at the non-degenerate wavelengths of 810 nm and 1550 nm, and is optimized for single-mode optical fiber collection and long-distance quantum communication. The configuration favors long crystals, which promote a high photon-pair production rate at a narrow bandwidth, together with a high pair-probability in fibers. The quality of entanglement is limited by chromatic dispersion, which we analyze by determining the output state. We find that such a decoherence effect is strongly material dependent, providing for long crystals an upper bound on the visibility of the coincidence fringes of 41% for KTiOPO4, and zero for LiNbO3. The best obtained raw visibility, when canceling decoherence with an extra piece of crystal, was 91 \pm 0.2%, including background counts. We confirm by a violation of the CHSH-inequality (S = 2.679 \pm 0.004 at 55 s^{-1/2} standard deviations) and by complete quantum state tomography that the fibers carry high-quality entangled pairs at a maximum rate of 55 x 10^3 s^{-1}THz^{-1}mW^{-1}.Comment: 12 pages, 10 figures, REVTeX

    Practical quantum repeaters with linear optics and double-photon guns

    Get PDF
    We show how to create practical, efficient, quantum repeaters, employing double-photon guns, for long-distance optical quantum communication. The guns create polarization-entangled photon pairs on demand. One such source might be a semiconducter quantum dot, which has the distinct advantage over parametric down-conversion that the probability of creating a photon pair is close to one, while the probability of creating multiple pairs vanishes. The swapping and purifying components are implemented by polarizing beam splitters and probabilistic optical CNOT gates.Comment: 4 pages, 4 figures ReVTe

    A calcium ion in a cavity as a controlled single-photon source

    Get PDF
    We present a single calcium ion, coupled to a high-finesse cavity, as an almost ideal system for the controlled generation of single photons. Photons from a pump beam are Raman-scattered by the ion into the cavity mode, which subsequently emits the photon into a well-defined output channel. In contrast with comparable atomic systems, the ion is localized at a fixed position in the cavity mode for indefinite times, enabling truly continuous operation of the device. We have performed numeric calculations to assess the performance of the system and present the first experimental indication of single-photon emission in our set-up

    Ranking ligand affinity for the DNA minor groove by experiment and simulation

    Get PDF
    The structural and thermodynamic basis for the strength and selectivity of the interactions of minor-groove binders (MGBs) with DNA is not fully understood. In 2003 we reported the first example of a thiazole containing MGB that bound in a phase shifted pattern that spanned 6 base-pairs rather than the usual 4 (for tricyclic distamycin-like compounds). Since then, using DNA footprinting, nuclear magnetic resonance spectroscopy, isothermal titration calorimetry and molecular dynamics, we have established that the flanking bases around the central 4 being read by the ligand have subtle effects on recognition. We have investigated the effect of these flanking sequences on binding and the reasons for the differences and established a computational method to rank ligand affinity against varying DNA sequences

    Dumbbell transport and deflection in a spatially periodic potential

    Full text link
    We present theoretical results on the deterministic and stochastic motion of a dumbbell carried by a uniform flow through a three-dimensional spatially periodic potential. Depending on parameters like the flow velocity, there are two different kinds of movement: transport along a potential valley and stair-like motion oblique to the potential trenches. The crossover between these two regimes, as well as the deflection angle, depends on the size of the dumbbell. Moreover, thermal fluctuations cause a resonance-like variation in the deflection angle as a function of the dumbbell extension.Comment: 5 pages, 8 figure

    An entangled two photon source using biexciton emission of an asymmetric quantum dot in a cavity

    Get PDF
    A semiconductor based scheme has been proposed for generating entangled photon pairs from the radiative decay of an electrically-pumped biexciton in a quantum dot. Symmetric dots produce polarisation entanglement, but experimentally-realised asymmetric dots produce photons entangled in both polarisation and frequency. In this work, we investigate the possibility of erasing the `which-path' information contained in the frequencies of the photons produced by asymmetric quantum dots to recover polarisation-entangled photons. We consider a biexciton with non-degenerate intermediate excitonic states in a leaky optical cavity with pairs of degenerate cavity modes close to the non-degenerate exciton transition frequencies. An open quantum system approach is used to compute the polarisation entanglement of the two-photon state after it escapes from the cavity, measured by the visibility of two-photon interference fringes. We explicitly relate the two-photon visibility to the degree of Bell-inequality violation, deriving a threshold at which Bell-inequality violations will be observed. Our results show that an ideal cavity will produce maximally polarisation-entangled photon pairs, and even a non-ideal cavity will produce partially entangled photon pairs capable of violating a Bell-inequality.Comment: 16 pages, 10 figures, submitted to PR
    • …
    corecore