1,109 research outputs found

    Confinement-induced Berry phase and helicity-dependent photocurrents

    Full text link
    The photocurrent in an optically active metal is known to contain a component that switches sign with the helicity of the incident radiation. At low frequencies, this current depends on the orbital Berry phase of the Bloch electrons via the "anomalous velocity" of Karplus and Luttinger. We consider quantum wells in which the parent material, such as GaAs, is not optically active and the relevant Berry phase only arises as a result of quantum confinement. Using an envelope approximation that is supported by numerical tight-binding results, it is shown that the Berry phase contribution is determined for realistic wells by a cubic Berry phase intrinsic to the bulk material, the well width, and the well direction. These results for the magnitude of the Berry-phase effect suggest that it may already have been observed in quantum well experiments.Comment: 4 pages, 2 figure

    Diffusion of Nonequilibrium Quasiparticles in a Cuprate Superconductor

    Full text link
    We report a transport study of nonequilibrium quasiparticles in a high-Tc cuprate superconductor using the transient grating technique. Low-intensity laser excitation (at photon energy 1.5 eV) was used to introduce a spatially periodic density of quasiparticles into a high-quality untwinned single crystal of YBa2Cu3O6.5. Probing the evolution of the initial density through space and time yielded the quasiparticle diffusion coefficient, and both inelastic and elastic scattering rates. The technique reported here is potentially applicable to precision measurement of quasiparticle dynamics, not only in cuprate superconductors, but in other electronic systems as well.Comment: 5 pages, 4 figure

    Quest for life-long protection by vaccination.

    Full text link

    Photoinduced Changes of Reflectivity in Single Crystals of YBa2Cu3O6.5 (Ortho II)

    Full text link
    We report measurements of the photoinduced change in reflectivity of an untwinned single crystal of YBa2Cu3O6.5 in the ortho II structure. The decay rate of the transient change in reflectivity is found to decrease rapidly with decreasing temperature and, below Tc, with decreasing laser intensity. We interpret the decay as a process of thermalization of antinodal quasiparticles, whose rate is determined by an inelastic scattering rate of quasiparticle pairs.Comment: 4 pages, 4 figure

    TBC experience in land based gas turbines

    Get PDF
    Prior and on-going machine evaluations of TBC coatings for power generation applications are summarized. Rainbow testing of various TBC's on turbine nozzles, shrouds and buckets are described along with one test on combustor liners. GEPG has conducted over 15 machine tests with TBC coated turbine nozzles of various coatings. Rainbow test times generally range between 10,000 to 24,000 hours. TBC performance has been quite good and additional testing, including TBC's on shrouds and buckets is continuing. The results show that TBC's have the capability of surviving in power generation machines for the times required. The earlier rainbow tests which evaluated various top coat compositions resulted in confirmation of the superiority of YSZ and especially the 6-8 YSZ composition. On-going tests are more focused on TBC process and property variations. The prevalent failure modes seen thus far in the various rainbow tests are erosion, foreign object damage and buildup of deposits. Additional post test analysis is required to investigate bond coat oxidation and other time/temperature dependent changes to the system

    Observation of ferromagnetic resonance in strontium ruthenate (SrRuO3)

    Get PDF
    We report the observation of ferromagnetic resonance (FMR) in SrRuO3 using the time-resolved magneto-optical Kerr effect. The FMR oscillations in the time-domain appear in response to a sudden, optically induced change in the direction of easy-axis anistropy. The high FMR frequency, 250 GHz, and large Gilbert damping parameter, alpha ~ 1, are consistent with strong spin-orbit coupling. We find that the parameters associated with the magnetization dynamics, including alpha, have a non-monotonic temperature dependence, suggestive of a link to the anomalous Hall effect.Comment: submitted to Phys. Rev. Let

    Determination of the spin-flip time in ferromagnetic SrRuO3 from time-resolved Kerr measurements

    Get PDF
    We report time-resolved Kerr effect measurements of magnetization dynamics in ferromagnetic SrRuO3. We observe that the demagnetization time slows substantially at temperatures within 15K of the Curie temperature, which is ~ 150K. We analyze the data with a phenomenological model that relates the demagnetization time to the spin flip time. In agreement with our observations the model yields a demagnetization time that is inversely proportional to T-Tc. We also make a direct comparison of the spin flip rate and the Gilbert damping coefficient showing that their ratio very close to kBTc, indicating a common origin for these phenomena

    High-Rate Entanglement Source via Two-Photon Emission from Semiconductor Quantum Wells

    Full text link
    We propose a compact high-intensity room-temperature source of entangled photons based on the efficient second-order process of two-photon spontaneous emission from electrically-pumped semiconductor quantum wells in a photonic microcavity. Two-photon emission rate in room-temperature semiconductor devices is determined solely by the carrier density, regardless of the residual one-photon emission. The microcavity selects two-photon emission for a specific signal and idler wavelengths and at a preferred direction without modifying the overall rate. Pair-generation rate in GaAs/AlGaAs quantum well structure is estimated using a 14-band model to be 3 orders of magnitude higher than for traditional broadband parametric down-conversion sources

    Observation of Coherent Helimagnons and Gilbert damping in an Itinerant Magnet

    Full text link
    We study the magnetic excitations of itinerant helimagnets by applying time-resolved optical spectroscopy to Fe0.8Co0.2Si. Optically excited oscillations of the magnetization in the helical state are found to disperse to lower frequency as the applied magnetic field is increased; the fingerprint of collective modes unique to helimagnets, known as helimagnons. The use of time-resolved spectroscopy allows us to address the fundamental magnetic relaxation processes by directly measuring the Gilbert damping, revealing the versatility of spin dynamics in chiral magnets. (*These authors contributed equally to this work
    corecore