2,928 research outputs found

    Variational perturbation theory compared with computer simulations

    Get PDF
    The variational perturbation theory has been applied to describe the compressibility of a 50% mixture of helium and nitrogen at room temperature and pressures up to 1 GPa. With parameters resulting from this perturbation theory, Monte Carlo simulations have been performed on model systems for these compounds as well as for the mixture. On comparison, clear restrictions are seen for the applicability of the perturbation theory combined with the one-fluid representation of mixtures

    On the General Analytical Solution of the Kinematic Cosserat Equations

    Full text link
    Based on a Lie symmetry analysis, we construct a closed form solution to the kinematic part of the (partial differential) Cosserat equations describing the mechanical behavior of elastic rods. The solution depends on two arbitrary analytical vector functions and is analytical everywhere except a certain domain of the independent variables in which one of the arbitrary vector functions satisfies a simple explicitly given algebraic relation. As our main theoretical result, in addition to the construction of the solution, we proof its generality. Based on this observation, a hybrid semi-analytical solver for highly viscous two-way coupled fluid-rod problems is developed which allows for the interactive high-fidelity simulations of flagellated microswimmers as a result of a substantial reduction of the numerical stiffness.Comment: 14 pages, 3 figure

    Kwaliteit en afzet van pelsdierenmest

    Get PDF

    Life-long tailoring of management for patients with hypertrophic cardiomyopathy

    Get PDF
    Hypertrophic cardiomyopathy (HCM) is the most common genetic heart disease, characterised by complex pathophysiology and extensive genetic and clinical heterogeneity. In most patients, HCM is caused by mutations in cardiac sarcomere protein genes and inherited as an autosomal dominant trait. The clinical phenotype ranges from severe presentations at a young age to lack of left ventricular hypertrophy in genotype-positive individuals. No preventative treatment is available as the sequence and causality of the pathomechanisms that initiate and exacerbate HCM are unknown. Sudden cardiac death and end-stage heart failure are devastating expressions of this disease. Contemporary management including surgical myectomy and implantable cardiac defibrillators has shown significant impact on long-term prognosis. However, timely recognition of specific scenarios – including transition to the end-stage phase – may be challenging due to limited awareness of the progression patterns of HCM. This in turn may lead to missed therapeutic opportunities. To illustrate these difficulties, we describe two HCM patients who progressed from the typical hyperdynamic stage of asymmetric septal thickening to end-stage heart failure with severely reduced ejection fraction. We highlight the different stages of this complex inherited cardiomyopathy based on the clinical staging pro-posed by Olivotto and colleagues. In this way, we aim to provide a practical guide for clinicians and hope to increase awareness for this common form of cardiac disease

    Fabrication Of Steaks From Spent Hens

    Get PDF
    Research at SDSU has demonstrated that meat from spent laying hens (spent fowl) can be utilized in the production of fabricated steaks and/or roasts. Previous studies utilized raw meat from carcasses that were manually deboned. Under commercial deboning, meat that has been precooked is more easily separated from the bone. Precooking reduces the ability for meat to hold together or bind in a processed product. Precooked and raw spent fowl muscles were compared as raw material for the production of fabricated steaks. The objective of this research was to produce from precooked spent fowl muscle a palatable restructured product that will withstand handling, cooking and serving

    Precision neutron interferometric measurement of the nd coherent neutron scattering length and consequences for models of three-nucleon forces

    Full text link
    We have performed the first high precision measurement of the coherent neutron scattering length of deuterium in a pure sample using neutron interferometry. We find b_nd = (6.665 +/- 0.004) fm in agreement with the world average of previous measurements using different techniques, b_nd = (6.6730 +/- 0.0045) fm. We compare the new world average for the nd coherent scattering length b_nd = (6.669 +/- 0.003) fm to calculations of the doublet and quartet scattering lengths from several modern nucleon-nucleon potential models with three-nucleon force (3NF) additions and show that almost all theories are in serious disagreement with experiment. This comparison is a more stringent test of the models than past comparisons with the less precisely-determined nuclear doublet scattering length of a_nd = (0.65 +/- 0.04) fm.Comment: 4 pages, 4 figure

    Intensity measurements in the helium spectrum

    Get PDF
    The absolute and relative intensities of thirteen lines of the helium spectrum, extending through the visible region, have been measured by a modification of the method developed by Ornstein and Dorgelo. The change of the method has consisted in comparing each line directly with the known emission from a tungsten filament, operated under constant conditions. The results for a discharge in a capillary tube, with pressures from 1.92 to 34.3 mm show that the absolute intensities increase rapidly to a maximum for pressures in the neighborhood of 2 to 4 mm, below which they tend toward zero. The relative intensities of the singlet system are favored by lowered pressures, and the higher members of the triplet system are likewise favored over the lower members, while the relative intensities within the singlet series show little effect of pressure

    EIT: Solar corona synoptic observations from SOHO with an Extreme-ultraviolet Imaging Telescope

    Get PDF
    The Extreme-ultraviolet Imaging Telescope (EIT) of SOHO (solar and heliospheric observatory) will provide full disk images in emission lines formed at temperatures that map solar structures ranging from the chromospheric network to the hot magnetically confined plasma in the corona. Images in four narrow bandpasses will be obtained using normal incidence multilayered optics deposited on quadrants of a Ritchey-Chretien telescope. The EIT is capable of providing a uniform one arc second resolution over its entire 50 by 50 arc min field of view. Data from the EIT will be extremely valuable for identifying and interpreting the spatial and temperature fine structures of the solar atmosphere. Temporal analysis will provide information on the stability of these structures and identify dynamical processes. EIT images, issued daily, will provide the global corona context for aid in unifying the investigations and in forming the observing plans for SOHO coronal instruments

    Radiative charge transfer lifetime of the excited state of (NaCa)+^+

    Get PDF
    New experiments were proposed recently to investigate the regime of cold atomic and molecular ion-atom collision processes in a special hybrid neutral-atom--ion trap under high vacuum conditions. The collisional cooling of laser pre-cooled Ca+^+ ions by ultracold Na atoms is being studied. Modeling this process requires knowledge of the radiative lifetime of the excited singlet A1Σ+^1\Sigma^+ state of the (NaCa)+^+ molecular system. We calculate the rate coefficient for radiative charge transfer using a semiclassical approach. The dipole radial matrix elements between the ground and the excited states, and the potential curves were calculated using Complete Active Space Self-Consistent field and M\"oller-Plesset second order perturbation theory (CASSCF/MP2) with an extended Gaussian basis, 6-311+G(3df). The semiclassical charge transfer rate coefficient was averaged over a thermal Maxwellian distribution. In addition we also present elastic collision cross sections and the spin-exchange cross section. The rate coefficient for charge transfer was found to be 2.3×10162.3\times 10^{-16} cm3^3/sec, while those for the elastic and spin-exchange cross sections were found to be several orders of magnitude higher (1.1×1081.1\times 10^{-8} cm3^3/sec and 2.3×1092.3\times 10^{-9} cm3^3/sec, respectively). This confirms our assumption that the milli-Kelvin regime of collisional cooling of calcium ions by sodium atoms is favorable with the respect to low loss of calcium ions due to the charge transfer.Comment: 4 pages, 5 figures; v.2 - conceptual change
    corecore