520 research outputs found

    Speed control with low armature loss for very small sensorless brushed DC motors

    Get PDF
    A method for speed control of brushed dc motors is presented. It is particularly applicable to motors with armatures of less than 1 cm3. Motors with very small armatures are difficult to control using the usual pulsewidth-modulation (PWM) approach and are apt to overheat if so driven. The technique regulates speed via the back electromotive force but does not require current-discontinuous drives. Armature heating in small motors under PWM drive is explained and quantified. The method is verified through simulation and measurement. Control is improved, and armature losses are minimized. The method can expect to find application in miniature mechatronic equipment

    Host-driven diversification of gall-inducing Acacia thrips and the aridification of Australia

    Get PDF
    BACKGROUND: Insects that feed on plants contribute greatly to the generation of biodiversity. Hypotheses explaining rate increases in phytophagous insect diversification and mechanisms driving speciation in such specialists remain vexing despite considerable attention. The proliferation of plant-feeding insects and their hosts are expected to broadly parallel one another where climate change over geological timescales imposes consequences for the diversification of flora and fauna via habitat modification. This work uses a phylogenetic approach to investigate the premise that the aridification of Australia, and subsequent expansion and modification of arid-adapted host flora, has implications for the diversification of insects that specialise on them. RESULTS: Likelihood ratio tests indicated the possibility of hard molecular polytomies within two co-radiating gall-inducing species complexes specialising on the same set of host species. Significant tree asymmetry is indicated at a branch adjacent to an inferred transition to a Plurinerves ancestral host species. Lineage by time diversification plots indicate gall-thrips that specialise on Plurinerves hosts differentially experienced an explosive period of speciation contemporaneous with climatic cycling during the Quaternary period. Chronological analyses indicated that the approximate age of origin of gall-inducing thrips on Acacia might be as recent as 10 million years ago during the Miocene, as truly arid landscapes first developed in Australia. CONCLUSION: Host-plant diversification and spatial heterogeneity of hosts have increased the potential for specialisation, resource partitioning, and unoccupied ecological niche availability for gall-thrips on Australian Acacia

    Small angle neutron scattering observation of chain retraction after a large step deformation

    Get PDF
    The process of retraction in entangled linear chains after a fast nonlinear stretch was detected from time-resolved but quenched small angle neutron scattering (SANS) experiments on long, well-entangled polyisoprene chains. The statically obtained SANS data cover the relevant time regime for retraction, and they provide a direct, microscopic verification of this nonlinear process as predicted by the tube model. Clear, quantitative agreement is found with recent theories of contour length fluctuations and convective constraint release, using parameters obtained mainly from linear rheology. The theory captures the full range of scattering vectors once the crossover to fluctuations on length scales below the tube diameter is accounted for

    Shear flow effects on phase separation of entangled polymer blends

    Get PDF
    We introduce an entanglement model mixing rule for stress relaxation in a polymer blend to a modified Cahn-Hilliard equation of motion for concentration fluctuations in the presence of shear flow. Such an approach predicts both shear-induced mixing and demixing, depending on the relative relaxation times and plateau moduli of the two components

    An Invariance Principle of G-Brownian Motion for the Law of the Iterated Logarithm under G-expectation

    Full text link
    The classical law of the iterated logarithm (LIL for short)as fundamental limit theorems in probability theory play an important role in the development of probability theory and its applications. Strassen (1964) extended LIL to large classes of functional random variables, it is well known as the invariance principle for LIL which provide an extremely powerful tool in probability and statistical inference. But recently many phenomena show that the linearity of probability is a limit for applications, for example in finance, statistics. As while a nonlinear expectation--- G-expectation has attracted extensive attentions of mathematicians and economists, more and more people began to study the nature of the G-expectation space. A natural question is: Can the classical invariance principle for LIL be generalized under G-expectation space? This paper gives a positive answer. We present the invariance principle of G-Brownian motion for the law of the iterated logarithm under G-expectation

    The surface wave environment in the GATE B/C Scale - Phase III

    Get PDF
    The surface wave environment in the GATE B/C scale is described from wave measurements made from buoys and aircraft during Phase III (September 1974). Particular emphasis is given to the wave measurements made from the pitch-roll buoy deployed in the B-scale array from the ship Gilliss and a similar buoy deployed in the C-scale array from Quadra. Reduction of the pitch-roll buoy measurements provided estimates of the one-dimensional wave spectrum as well as of the mean direction and spread of wave energy as a function of frequency. The data clearly revealed the importance of external forcing on the wave climate in GATE. Most of the wave energy present in the GATE areas was found to be swell imported from the trade wind circulations of both hemispheres and from an intense extratropical cyclone which crossed the North Atlantic at high latitudes early in Phase III. Locally generated waves were clearly evident in the wave spectra, but their energy level way have been modulated significantly by the low-frequency swell. The GATE wave data set can provide a powerful test of contemporary numerical wave-prediction models. The present study defines the, attributes which are required of such models for meaningful application to the GATE needs

    Unfolding dynamics of proteins under applied force

    Get PDF
    Understanding the mechanisms of protein folding is a major challenge that is being addressed effectively by collaboration between researchers in the physical and life sciences. Recently, it has become possible to mechanically unfold proteins by pulling on their two termini using local force probes such as the atomic force microscope. Here, we present data from experiments in which synthetic protein polymers designed to mimic naturally occurring polyproteins have been mechanically unfolded. For many years protein folding dynamics have been studied using chemical denaturation, and we therefore firstly discuss our mechanical unfolding data in the context of such experiments and show that the two unfolding mechanisms are not the same, at least for the proteins studied here. We also report unexpected observations that indicate a history effect in the observed unfolding forces of polymeric proteins and explain this in terms of the changing number of domains remaining to unfold and the increasing compliance of the lengthening unstructured polypeptide chain produced each time a domain unfolds

    Molecular observation of contour-length fluctuations limiting topological confinement in polymer melts

    Get PDF
    In order to study the mechanisms limiting the topological chain confinement in polymer melts, we have performed neutron-spin-echo investigations of the single-chain dynamic-structure factor from polyethylene melts over a large range of chain lengths. While at high molecular weight the reptation model is corroborated, a systematic loosening of the confinement with decreasing chain length is found. The dynamic-structure factors are quantitatively described by the effect of contour-length fluctuations on the confining tube, establishing this mechanism on a molecular level in space and time

    Dumbbell transport and deflection in a spatially periodic potential

    Full text link
    We present theoretical results on the deterministic and stochastic motion of a dumbbell carried by a uniform flow through a three-dimensional spatially periodic potential. Depending on parameters like the flow velocity, there are two different kinds of movement: transport along a potential valley and stair-like motion oblique to the potential trenches. The crossover between these two regimes, as well as the deflection angle, depends on the size of the dumbbell. Moreover, thermal fluctuations cause a resonance-like variation in the deflection angle as a function of the dumbbell extension.Comment: 5 pages, 8 figure
    • ā€¦
    corecore