310 research outputs found

    On the Oceanic Communication Between the Western Subartic Gyre and the Deep Bering Sea

    Get PDF
    The article of record as published may be found at http://dx.doi.org/10.1016/j.dsr.2012.04.001Sparse information is available on the communication between the northern North Pacific and the southern Bering Sea. We present results from a multi-decadal simulation of a high-resolution, pan-Arctic ice-ocean model to address the long-term mean and variability and synthesize limited observations in the Alaskan Stream, Western Subarctic Gyre, and southern Bering Sea. While the mean circulation in the Bering Sea basin is cyclonic, during the 26-year simulation meanders and eddies are continuously present throughout the region, which is consistent with observations from Cokelet and Stabeno (1997). Prediction (instead of prescription) of the Alaskan Stream and Aleutian throughflow allows reproduction of meanders and eddies in the Alaskan Stream and Kamchatka Current similar to those that have been observed previously (e.g. Crawford et al., 2000; Rogachev and Carmack, 2002; Rogachev and Gorin, 2004). Interannual variability in mass transport and property fluxes is particularly strong across the western Aleutian Island Passes, including Buldir Pass, Near Strait, and Kamchatka Strait. Much of this variability can be attributed to the presence of meanders and eddies found both north and south of the passes, which are found to directly cause periodic flow reversals and maxima in the western passes. Given that modeled flow reversals and maxima last for time periods ranging between three months and two years, short-term observations (months to few years) may not be representative of the actual mean flow. These extremes in the communication across the Aleutian Island Passes have a large impact on the oceanic environmental conditions in the southern Bering Sea and could directly impact biological species there and further downstream. Therefore, we identify a need for continuous monitoring of the flow through Buldir Pass, Near, and Kamchatka straits.Energy Climate and Environmental Sciences Division of the Biological and Environmental Research programNational Science Foundation Office of Polar ProgramsOffice of Naval ResearchUS Department of Defense High Performance Computer Modernization Program (HPCMP), for computer resource

    On recent changes in sea ice and ocean conditions and their potential feedback to Arctic climate

    Get PDF
    Excerpted from Global Implications of Arctic Climate Processes and Feedbacks, Report of the Arctic Climate Workshop, Alfred Wegener Institute for Polar and Marine Research Potsdam (Germany), 5 - 7 September 2005. Edited by Annette Rinke und Klaus Dethlof

    Investigation of the Summer Kara Sea Circulation Employing a Variational Data Assimilation Technique

    Get PDF
    [ 1] The summer circulations and hydrographic fields of the Kara Sea are reconstructed for mean, positive and negative Arctic Oscillation regimes employing a variational data assimilation technique which provides the best fit of reconstructed fields to climatological data and satisfies dynamical and kinematic constraints of a quasi-stationary primitive equation ocean circulation model. The reconstructed circulations agree well with the measurements and are characterized by inflow of 0.63, 0.8, 0.51 Sv through Kara Gate and 1.18, 1.1, 1.12 Sv between Novaya Zemlya and Franz Josef Land, for mean climatologic conditions, positive and negative AO indexes, respectively. The major regions of water outflow for these regimes are the St. Anna Trough (1.17, 1.21, 1.34 Sv) and Vilkitsky/ Shokalsky Straits (0.52, 0.7, 0.51 Sv). The optimized velocity pattern for the mean climatological summer reveals a strong anticyclonic circulation in the central part of the Kara Sea ( Region of Fresh Water Inflow, ROFI zone) and is confirmed by ADCP surveys and laboratory modeling. This circulation is well pronounced for both high and low AO phases, but in the positive AO phase it is shifted approximately 200 km west relatively to its climatological center. During the negative AO phase the ROFI locaion is close to its climatological position. The results of the variational data assimilation approach were compared with the simulated data from the Hamburg Shelf Ocean Model (HAMSOM) and Naval Postgraduate School 18 km resolution (NPS-18) model to validate these models

    On large outflows of Arctic sea ice into the Barents Sea

    Get PDF
    Winter outflows of Arctic sea ice into the Barents Sea are estimated using a 10-year record of satellite ice motion and thickness. The mean winter volume export through the Svalbard/Franz Josef Land passage is 40 km(3), and ranges from - 280 km(3) to 340 km(3). A large outflow in 2003 is preconditioned by an unusually high concentration of thick perennial ice over the Nansen Basin at the end of the 2002 summer. With a deep atmospheric low situated over the eastern Barents Sea in winter, the result is an increased export of Arctic ice. The Oct-Mar ice area flux, at 110 x 10(3) km(2), is not only unusual in magnitude but also remarkable in that > 70% of the area is multiyear ice; the ice volume flux at similar to 340 km(3) is almost one-fifth of the ice flux through the Fram Strait. Another large outflow of Arctic sea ice through this passage, comparable to that in 2003, is found in 1996. This southward flux of sea ice represents one of two major sources of freshwater in the Barents Sea; the other is the eastward flux of water via the Norwegian Coastal Current. The possible consequences of variable freshwater input on the Barents Sea hydrography and its impact on transformation of Atlantic Water en route to the Arctic Ocean are examined with a 25-year coupled ice-ocean model

    Exponential Mixing for a Stochastic PDE Driven by Degenerate Noise

    Full text link
    We study stochastic partial differential equations of the reaction-diffusion type. We show that, even if the forcing is very degenerate (i.e. has not full rank), one has exponential convergence towards the invariant measure. The convergence takes place in the topology induced by a weighted variation norm and uses a kind of (uniform) Doeblin condition.Comment: 10 pages, 1 figur

    Simulation of a Lunar Surface Base Power Distribution Network for the Constellation Lunar Surface Systems

    Get PDF
    The Lunar Surface Power Distribution Network Study team worked to define, breadboard, build and test an electrical power distribution system consistent with NASA's goal of providing electrical power to sustain life and power equipment used to explore the lunar surface. A testbed was set up to simulate the connection of different power sources and loads together to form a mini-grid and gain an understanding of how the power systems would interact. Within the power distribution scheme, each power source contributes to the grid in an independent manner without communication among the power sources and without a master-slave scenario. The grid consisted of four separate power sources and the accompanying power conditioning equipment. Overall system design and testing was performed. The tests were performed to observe the output and interaction of the different power sources as some sources are added and others are removed from the grid connection. The loads on the system were also varied from no load to maximum load to observe the power source interactions

    Stochastic evolution equations driven by Liouville fractional Brownian motion

    Get PDF
    Let H be a Hilbert space and E a Banach space. We set up a theory of stochastic integration of L(H,E)-valued functions with respect to H-cylindrical Liouville fractional Brownian motions (fBm) with arbitrary Hurst parameter in the interval (0,1). For Hurst parameters in (0,1/2) we show that a function F:(0,T)\to L(H,E) is stochastically integrable with respect to an H-cylindrical Liouville fBm if and only if it is stochastically integrable with respect to an H-cylindrical fBm with the same Hurst parameter. As an application we show that second-order parabolic SPDEs on bounded domains in \mathbb{R}^d, driven by space-time noise which is white in space and Liouville fractional in time with Hurst parameter in (d/4,1) admit mild solution which are H\"older continuous both and space.Comment: To appear in Czech. Math.

    Causes and evolution of winter polynyas north of Greenland

    Get PDF
    During the 42-year period (1979–2020) of satellite measurements, four major winter (December–March) polynyas have been observed north of Greenland: one in December 1986 and three in the last decade, i.e., February of 2011, 2017, and 2018. The 2018 polynya was unparalleled in its magnitude and duration compared to the three previous events. Given the apparent recent increase in the occurrence of these extreme events, this study aims to examine their evolution and causality, in terms of forced versus natural variability. The limited weather station and remotely sensed sea ice data are analyzed combining with output from the fully coupled Regional Arctic System Model (RASM), including one hindcast and two ensemble simulations. We found that neither the accompanying anomalous warm surface air intrusion nor the ocean below had an impact (i.e., no significant ice melting) on the evolution of the observed winter open-water episodes in the region. Instead, the extreme atmospheric wind forcing resulted in greater sea ice deformation and transport offshore, accounting for the majority of sea ice loss in all four polynyas. Our analysis suggests that strong southerly winds (i.e., northward wind with speeds greater than 10 m s−1) blowing persistently over the study region for at least 2 d or more were required over the study region to mechanically redistribute some of the thickest Arctic sea ice out of the region and thus to create open-water areas (i.e., a latent heat polynya). To assess the role of internal variability versus external forcing of such events, we carried out and examined results from the two RASM ensembles dynamically downscaled with output from the Community Earth System Model (CESM) Decadal Prediction Large Ensemble (DPLE) simulations. Out of 100 winters in each of the two ensembles (initialized 30 years apart: one in December 1985 and another in December 2015), 17 and 16 winter polynyas were produced north of Greenland, respectively. The frequency of polynya occurrence had no apparent sensitivity to the initial sea ice thickness in the study area pointing to internal variability of atmospheric forcing as a dominant cause of winter polynyas north of Greenland. We assert that dynamical downscaling using a high-resolution regional climate model offers a robust tool for process-level examination in space and time, synthesis with limited observations, and probabilistic forecasts of Arctic events, such as the ones being investigated here and elsewhere.</p
    corecore