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Abstract. Let H be a Hilbert space and E a Banach space. We set up a theory of
stochastic integration of L (H,E)-valued functions with respect to H-cylindrical Liouville
fractional Brownian motion with arbitrary Hurst parameter 0 < β < 1. For 0 < β < 1

2

we show that a function Φ: (0, T ) → L (H, E) is stochastically integrable with respect
to an H-cylindrical Liouville fractional Brownian motion if and only if it is stochastically
integrable with respect to an H-cylindrical fractional Brownian motion.
We apply our results to stochastic evolution equations

dU(t) = AU(t) dt+B dW β
H
(t)

driven by an H-cylindrical Liouville fractional Brownian motion, and prove existence,
uniqueness and space-time regularity of mild solutions under various assumptions on the
Banach space E, the operators A : D(A)→ E and B : H → E, and the Hurst parameter β.
As an application it is shown that second-order parabolic SPDEs on bounded domains

in R
d, driven by space-time noise which is white in space and Liouville fractional in time,

admit a mild solution if 1
4
d < β < 1.

Keywords: (Liouville) fractional Brownian motion, fractional integration, stochastic evo-
lution equations

MSC 2010 : 60H05, 35R60, 47D06, 60G18

1. Introduction

Since the pioneering paper of Mandelbrot and Van Ness [27], fractional Brownian

motion (fBm) has been proposed as a model to a variety of phenomena in population
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gratefully acknowledges financial support by VICI subsidy 639.033.604 of the Netherlands
Organization for Scientific Research (NWO).
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dynamics (e.g. [22], [23]), random long-time influences in climate systems (e.g. [38],

[39]), mathematical finance (e.g. [3], [8], [16], [17], [37], and the references therein),

random dynamical systems (e.g. [29]), and telecommunications (e.g. [26], [46]). This

has motivated many studies of stochastic partial differential equations driven by fBm,

among them [1], [7], [12], [16], [19], [20], [21], [40], [44]. Following the approach of

Da Prato and Zabczyk [9], such equations may often be formulated as abstract

stochastic evolution equations on an infinite-dimensional state space. This naturally

leads to the problem of defining a stochastic integral with respect to cylindrical fBm

in such spaces. This problem has been considered by various authors, among them

Duncan, Maslowski, Pasik-Duncan [12] (in Hilbert spaces for cylindrical fBm with

Hurst parameter 0 < β < 1
2 ) and Duncan, Maslowski, Pasik-Duncan [40] (in Hilbert

spaces for fBm with Hurst parameter 1
2 < β < 1). The stochastic integral constructed

in these papers was used to prove existence of mild solutions for stochastic abstract

Cauchy problems of the form

dU(t) = AU(t) +B dW β
H(t), U(0) = u0,

where A is the generator of a C0-semigroup on a Hilbert space E, B is a bounded

operator from another Hilbert space H to E, and W β
H is an H-cylindrical fBm with

Hurst parameter β (in contrast with the literature on fBm, but in line with the

literature of SPDEs, we use the letter H for the Hilbert space associated with the

cylindrical noise). Among other things, for 1
2 < β < 1 it was shown that a mild

solution always exists if B is a Hilbert-Schmidt operator, and for 0 < β < 1
2 the

same conclusion holds if one assumes that the semigroup generated by A is analytic.

The purpose of this paper is to prove analogues of the above-mentioned results for

cylindrical Liouville fBm and to extend the setting to Banach spaces E. Stochastic

integration with respect to Liouville fBm turns out to be both simpler and more

symmetric with respect to the choice of the Hurst parameter below or above the

critical value β = 1
2 . In many respects this allows a unified treatment of both cases.

For 0 < β < 1
2 it turns out that an operator-valued function Φ: (0, T ) → L (H,E)

is stochastically integrable with respect to an H-cylindrical fBm if and only if it is

stochastically integrable with respect to an H-cylindrical Liouville fBm.

Our theory is applied to stochastic evolution equations driven by an H-cylindrical

fBm. We show that second-order parabolic SPDEs on bounded domains in Rd, driven

by space-time noise which is white in space and Liouville fractional in time, admit

a mild solution if 1
4d < β < 1.

We conclude this introduction with a brief comparison of our results with the

existing literature. In [44] the authors study stochastic evolution equations driven

by additive cylindrical fBm in a Hilbert space framework for self-adjoint operators A.
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When applied to the stochastic heat equation, their regularity results appear to be

weaker than ours. This seems to be an intrinsic feature of the fact that the method

is limited to the Hilbert space framework; in our Banach space framework we are

able to use Lp-techniques.

The method of Young integrals employed in [18] leads to the same regularity results

as ours in the case of one-dimensional stochastic heat equation. The approach taken

in that paper is purely pathwise while ours is stochastic.

Let us finally mention that semilinear stochastic evolution equations in Hilbert

spaces driven by multiplicative cylindrical fBm have been studied in [28] for Hurst

parameter 1
2 < β < 1. We believe that the results obtained here can be extended to

this class of equations in a Banach space framework by following the approach of,

e.g., [34].

2. Fractional integration spaces

For α > 0 the left Liouville fractional integral and the right Liouville fractional

integral of order α of a function f ∈ L2(a, b) are defined by

(Iα
a+f)(t) :=

1

Γ(α)

∫ t

a

(t− s)α−1f(s) ds, t ∈ [a, b],

(Iα
b−f)(t) :=

1

Γ(α)

∫ b

t

(s− t)α−1f(s) ds, t ∈ [a, b].

By Young’s inequality, the functions Iα
a+f and I

α
b−f belong to L

2(a, b). The opera-

tors Iα
a+ and I

α
b− are bounded and injective on L

2(a, b), with dense ranges denoted

by

Hα
a+(a, b) := Iα

a+(L2(a, b)), Hα
b−(a, b) := Iα

b−(L2(a, b)).

These spaces are Hilbert spaces with respect to the norms

‖Iα
a+f‖Hα

a+
:= ‖f‖L2(a,b), ‖Iα

b−f‖Hα
b−

:= ‖f‖L2(a,b).

We have continuous inclusions

Hα
a+(a, b) →֒ L2(a, b), Hα

b−(a, b) →֒ L2(a, b).

The following simple observation will be used frequently.
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Lemma 2.1. Let α > 0 and a < x < b.

(1) (Restriction with left boundary condition). If f ∈ Hα
a+(a, b), then f |(a,x) ∈

Hα
a+(a, x) and

‖f |(a,x)‖Hα
a+

(a,x) 6 ‖f‖Hα
a+

(a,b).

(2) (Extension with right boundary condition). If f ∈ Hα
x−(a, x) and we define

fx(s) = f(s) for s ∈ (a, x) and fx(s) = 0 otherwise, then fx ∈ Hα
b−(a, b) and

‖fx‖Hα
b−

(a,b) = ‖f‖Hα
x−

(a,x).

(3) (Reflection). We have f ∈ Hα
a+(a, b) if and only if f̌ ∈ Hα

b−(a, b), where f̌(t) :=

f(b− (t− a)), and in this situation we have

‖f‖Hα
a+

(a,b) = ‖f̌‖Hα
b−

(a,b).

P r o o f. We only prove (1); the proofs of (2) and (3) are similar. By assumption,

f = Iα
a+g for some g ∈ L2(a, b). Clearly, for s ∈ (a, x) we have (Iα

a+(g|(a,x)))(s) =

f(s), where by slight abuse of notation we also use the notation Iα
a+ for the fractional

integration operator acting on L2(a, x). It follows that f |(a,x) ∈ Hα
a+(a, x) and

Iα
a+(g|(a,x)) = f |(a,x). Moreover, ‖f |(a,x)‖Hα

a+
(a,x) = ‖g|(a,x)‖L2(a,x) 6 ‖g‖L2(a,x) =

‖f‖Hα
a+

(a,b). �

The following result is less elementary; for a proof we refer to [42, Chapter 3,

Section 13.3].

Lemma 2.2. Let 0 < α < 1
2 . Then we haveH

α
a+(a, b) = Hα

b−(a, b) with equivalent

norms. As a consequence, for all a < x < b there is a constant Cα,x such that:

(1) (Restriction with right boundary condition). If f ∈ Hα
b−(a, b), then f |(a,x) ∈

Hα
x−(a, x) and

‖f |(a,x)‖Hα
x−

(a,x) 6 Cα,x‖f‖Hα
b−

(a,b).

(2) (Extension with left boundary condition). If f ∈ Hα
a+(a, x) and we define

fx(s) = f(s) for s ∈ (a, x) and fx(s) = 0 otherwise, then fx ∈ Hα
a+(a, b) and

‖fx‖Hα
a+

(a,b) 6 Cα,x‖f‖Hα
a+

(a,x).

This lemma allows us to write, for 0 < α < 1
2 ,

Hα(a, b) := Hα
a+(a, b) = Hα

b−(a, b)
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with equivalent norms. We will use this simplified notation whenever the precise

choice of the norm is irrelevant; when the choice of the norm does matter we stick

to the original notation with subscripts.

The next result is formulated for the right fractional integral; a similar result holds

for the left fractional integral.

Lemma 2.3. Let 0 < α < 1
2 . For all a 6 x < y 6 b, the indicator function 1[x,y)

defines an element in Hα(a, b). Moreover, the linear span of the indicator functions

is dense in Hα(a, b).

P r o o f. To prove the first assertion, by linearity we may assume that x = a.

Define

gy(t) :=
1

Γ(1 − α)
(y − t)−α 1(a,y)(t), t ∈ (a, b).

Then gy ∈ L2(a, b) and

(Iα
b−gy)(t) =

1

Γ(α)Γ(1 − α)

∫ b

t

(s− t)α−1(y − s)−α 1(a,y)(s) ds, t ∈ (a, b).

For t ∈ [y, b) it is clear that (Iα
b−gy)(t) = 0, whereas for t ∈ (a, y) we have, by

a change of variable σ = (s− t)/(y − t),

(Iα
b−gy)(t) =

1

Γ(α)Γ(1 − α)

∫ 1

0

σα−1(1 − σ)−α dσ = 1.

This shows that

(2.1) Iα
b−gy = 1(a,y)

and therefore 1(a,y) ∈ Hα(a, b).

Next we prove that the linear span of all indicator functions of the form 1[x,y) is

dense in Hα(a, b). Since Iα
b− is an isomorphism from L2(a, b) onto Hα(a, b), it is

enough to prove that the linear span of the set of functions gy introduced above is

dense in L2(a, b). To this end let us assume that f ∈ L2(a, b) is a function such that

for all a < y 6 b we have [f, gy]L2(a,b) = 0. In view of

0 = [f, gy]L2(a,b) =
1

Γ(1 − α)

∫ y

a

(y − t)−αf(t) dt = (I1−α
a+ f)(y), a < y 6 b,

this implies that I1−α
a+ f = 0 in Hα(a, b). Therefore f = 0 in L2(a, b) and the proof

is complete. �
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For α > 0 we define the negative fractional integral spacesH−α
0+ (a, b) andH−α

T−(a, b)

as the completions of L2(a, b) with respect to the norms

‖f‖H
−α
a+

(a,b) := ‖Iα
a+f‖L2(a,b), ‖f‖H

−α
b−

(a,b) := ‖Iα
b−f‖L2(a,b).

It is an easy consequence of Lemma 2.2 that for 0 < α < 1
2 we have H

−α
0+ (a, b) =

H−α
T−(a, b) with equivalent norms. Accordingly we will write

H−α(a, b) := H−α
0+ (a, b) = H−α

T−(a, b)

as long as the precise choice of the norm is unimportant.

We further define, for α > 0,

I−α
a+ := (Iα

a+)−1 = Dα
a+, I−α

b− := (Iα
b−)−1 = Dα

b−,

where Dα
a+ and D

α
b− are the left- and right fractional derivatives of order α. With

these definitions, we have isometric isomorphisms

I−α
a+ : L2(a, b) ≃ H−α

a+ (a, b), I−α
b− : L2(a, b) ≃ H−α

b− (a, b).

Finally, we let H0
a+(a, b) = H0

b−(a, b) := L2(a, b) and agree that I0
a+ = I0

b− := I,

the identity mapping on L2(a, b).

3. Stochastic integration

Throughout the rest of this paper we fix a number T > 0. We shall write L2 :=

L2(0, T ) and
Hα

0+ := Hα
0+(0, T ), Hα

T− := Hα
T−(0, T ),

C0+ := C0+[0, T ], CT− := CT−[0, T ],

where C0+[0, T ] = {f ∈ C[0, T ] : f(0) = 0} and CT−[0, T ] = {f ∈ C[0, T ] : f(T ) =

0}. For α > 1
2 we denote the inclusion mappings H

α
0 →֒ C0+ and H

α
T− →֒ CT−

by iα0+ and i
α
T−, respectively.

For 0 < β < 1 and 0 6 s, t 6 T we set

Γβ
s,t :=

[
(i

β+ 1
2

0+ )∗δs, (i
β+ 1

2

0+ )∗δt
]
H

β+ 1
2

0+

,

where δs and δt denote the Dirac measures concentrated at s and t (which we identify

with functionals in the dual of C0+ in the natural way). An easy computation, cf. [14,

Swection 6.2], gives

Γβ
s,t =

1

(Γ(β + 1
2 ))2

∫ s∧t

0

(s− u)β− 1
2 (t− u)β− 1

2 du, s, t ∈ [0, T ].
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Definition 3.1. A Liouville fractional Brownian motion (Liouville fBm) of order

0 < β < 1, indexed by [0, T ], is a Gaussian process W β = (W β(t))t∈[0,T ] such that

E(W β(s)W β(t)) = Γβ
s,t, s, t ∈ [0, T ].

By the general theory of Gaussian processes, Liouville fBm exists. Note that

Γ
1
2

s,t = s ∧ t, so a Liouville fBm of order 1
2 is just a standard Brownian motion.

The stochastic integral of a real-valued step function f =
N∑

j=1

cj 1(aj,bj ] with respect

to a Liouville fBm W β is defined by

∫ T

0

f dW β :=

N∑

j=1

cj(W
β(bj) −W β(aj)).

One easily checks that this definition does not depend on the representation of f .

We proceed with analogues, for 0 < β < 1
2 and

1
2 < β < 1, of the classical Itô

isometry (which corresponds to β = 1
2 ). These cases require different treatments

and are therefore considered separately.

3.1. The case 0 < β < 1
2

Proposition 3.2 (Itô isometry I). Let 0 < β < 1
2 . If f : (0, T ) → R is a step

function, then
∫ T

0
f dW β is Gaussian and

(3.1) E

∣∣∣∣
∫ T

0

f dW β

∣∣∣∣
2

= ‖f‖2

H
1
2
−β

T−

.

As a result, the mapping f 7→
∫ T

0
f dW β has a unique extension to an isometry from

H
1
2
−β

T− into L2(Ω).

P r o o f. Suppose that f =
N∑

j=1

cj 1(aj,bj ] is a step function with real coeffi-

cients cj . We may assume that the intervals (aj , bj ] are disjoint. Then,

E

∣∣∣∣
∫ T

0

f dW β

∣∣∣∣
2

= E

∣∣∣∣
N∑

j=1

cj(W
β(bj) −W β(aj))

∣∣∣∣
2

=

N∑

i,j=1

cicj(Γ
β
bi,bj

− Γβ
ai,bj

− Γβ
aj,bi

+ Γβ
ai,aj

) =

∫ T

0

|g(s)|2 ds,
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where

g(s) :=
1

Γ(β + 1
2 )

N∑

j=1

cj((bj − s)β− 1
2 1(0,bj](s) − (aj − s)β− 1

2 1(0,aj](s)).

Since 0 < β < 1
2 , (2.1) shows that

I
1
2
−β

T− g =

N∑

j=1

cj 1(aj,bj ] = f.

In view of the identity ‖g‖L2 = ‖f‖
H

1
2
−β

T−

, the isometry (3.1) is proved. The final

assertion concerning the unique extendability of the integral follows from the density

of the step functions in H
1
2
−β

T− as proved in Lemma 2.3. �

3.2. The case 1
2 < β < 1

Proposition 3.3 (Itô isometry II). Let 1
2 < β < 1. If f : (0, T ) → R is a step

function, then
∫ T

0
f dW β is Gaussian and

E

∣∣∣∣
∫ T

0

f dW β

∣∣∣∣
2

= ‖f‖2

H
1
2
−β

T−

.

As a result, the mapping f 7→
∫ T

0
f dW β has a unique extension to an isometry from

H
1
2
−β

T− into L2(Ω).

P r o o f. First let f = 1(0,s) and g = 1(0,t) be left indicator functions with s < t.

Then

E

[∫ T

0

1(0,s) dW β ·
∫ T

0

1(0,t) dW β

]

= E[W β(s)W β(t)] =
1

(Γ(β + 1
2 ))2

∫ s

0

(s− u)β− 1
2 (t− u)β− 1

2 du.

On the other hand, for τ ∈ {s, t},

I
β− 1

2

T− 1(0,τ)(u) =
1

Γ(β − 1
2 )

∫ T

u

(r − u)β− 3
2 1(0,τ)(r) dr

=
1

Γ(β − 1
2 )

∫ τ

u∧τ

(r − u)β− 3
2 dr

=
1

Γ(β + 1
2 )

[(τ − u)β− 1
2 − ((u ∧ τ) − u)β− 1

2 ].
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Hence,

[I
β− 1

2

T− 1(0,s), I
β− 1

2

T− 1(0,t)]L2

=
1

(Γ(β + 1
2 ))2

∫ T

0

[(s− u)β− 1
2 − ((u ∧ s) − u)β− 1

2 ]

× [(t− u)β− 1
2 − ((u ∧ t) − u)β− 1

2 ] du

=
1

(Γ(β + 1
2 ))2

∫ s∧t

0

(s− u)β− 1
2 (t− u)β− 1

2 du.

Putting things together we obtain

E

[∫ T

0

1(0,s) dW β ·
∫ T

0

1(0,t) dW β

]
= [I

β− 1
2

T− 1(0,s), I
β− 1

2

T− 1(0,t)]
2
L2 .

By linearity, this identity extends to linear combinations of left indicator functions.

Therefore we obtain, for all step functions ϕ,

E

∣∣∣∣
∫ T

0

ϕdW β

∣∣∣∣
2

= ‖Iβ− 1
2

T− ϕ‖2
L2 .

Since step functions are dense in L2, this proves the result. �

3.3. Lemma

We close this section with a lemma that will be needed in Section 5.

Lemma 3.4. Let W β be a Liouville fBm of order 0 < β < 1. For all 0 6 α <

min{β + 1
2 , 1} and 0 6 s < t <∞,

(
E

∣∣∣∣
∫ t

s

(t− r)−α dW β(r)

∣∣∣∣
2)1

2

= cα,β(t− s)β−α,

where cα,β is a constant depending only on α and β.

P r o o f. For β = 1
2 the result is immediate from the classical Itô isometry.

Next, let 0 < β < 1
2 . For gs(r) := (r − s)β−α− 1

2 we have

I
1
2
−β

s+ gs(u) =
1

Γ(1
2 − β)

∫ u

s

(u− r)−
1
2
−β(r − s)β−α− 1

2 dr = Cα,β(u− s)−α,

9



where Cα,β is a constant depending only on α and β. Hence by Lemma 2.1 (3) and

Proposition 3.2,

(
E

∣∣∣∣
∫ t

s

(t− r)−α dW β(r)

∣∣∣∣
2)1

2

= ‖r 7→ (t− r)−α‖
H

1
2
−β

t−

= ‖r 7→ (r − s)−α‖
H

1
2
−β

s+

=
1

Cα,β

‖u 7→ (u− s)β−α− 1
2 ‖L2(s,t) = cα,β(t− s)β−α.

Next, let 1
2 < β < 1. By Lemma 2.1 (3) and Proposition 3.3,

(
E

∣∣∣∣
∫ t

s

(t− r)−α dW β(r)

∣∣∣∣
2)1

2

= ‖r 7→ (t− r)−α‖
H

1
2
−β

t−

= ‖r 7→ (r − s)−α‖
H

1
2
−β

s+

=

∥∥∥∥u 7→ 1

Γ(β − 1
2 )

∫ u

s

(u − r)β− 3
2 (r − s)−α dr

∥∥∥∥
L2(s,t)

= C′
α,β‖u 7→ (u − s)β−α− 1

2 ‖L2(s,t) = c′a,b(t− s)β−α,

where C′
α,β and c

′
α,β are constants depending only on α and β. �

3.4. γ-radonifying operators

In order to prepare for the results on vector-valued stochastic integration we need

a couple of preliminaries on spaces of γ-radonifying operators. For the rest of this

paper we fix a real Hilbert space H and a real Banach space E. Unless otherwise

stated, [·, ·]H and ‖ · ‖H refer to the inner product and norm of H , and ‖ · ‖ refers to
the norm of E.

Any finite rank operator S : H → E can be represented in the form

S =

N∑

n=1

hn ⊗ xn

with h1, . . . , hN orthonormal in H and x1, . . . , xN taken from E. The γ-radonifying

norm of S is then defined by

∥∥∥∥
N∑

n=1

hn ⊗ xn

∥∥∥∥
2

γ(H,E)

:= E

∥∥∥∥
N∑

n=1

γnxn

∥∥∥∥
2

,

where (γn)n>1 is a sequence of independent standard Gaussian random variables

on some probability space (Ω,A ,P). It is easy to check that this definition does
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not depend on the particular representation of S. The completion of the space of

finite rank operators with respect to this norm is denoted by γ(H,E). This space is

continuously embedded in L (H,E), and a bounded operator R ∈ L (H,E) is called

γ-radonifying if it belongs to γ(H,E).

The space γ(H,E) is an operator ideal in L (H,E) in the sense that whenever

H ′ is another real Hilbert space, E′ is another real Banach space, and R : H ′ → H

and T : E → E′ are bounded operators, then S ∈ γ(H,E) implies TSR ∈ γ(H ′, E′)

and

‖TSR‖γ(H′,E′) 6 ‖T ‖‖S‖γ(H,E)‖R‖.

If E is a Hilbert space, then γ(H,E) is isometrically isomorphic to the Hilbert

space of Hilbert-Schmidt operators from H to E.

Example 3.5 ([5], [32]). For E = Lq(X,µ) with q ∈ [1,∞) and (X,µ) a σ-finite

measure space we have a natural isomorphism of Banach spaces

γ(H,Lq(X,µ)) ≃ Lq(X,µ;H)

obtained by assigning to a function f ∈ Lp(X,µ;H) the operator Sf : H → Lp(X,µ),

Sfh := [f(·), h].

Lemma 3.6. Let S =
N∑

n=1
hn ⊗ xn be a finite rank operator from H to E, with

h1, . . . , hN orthonormal inH and x1, . . . , xN taken fromE, and supposeH
′ is another

Hilbert space. For all h′ ∈ H ′ we have

∥∥∥∥
N∑

n=1

(h′ ⊗ hn) ⊗ xn

∥∥∥∥
γ(H′⊗̂H,E)

= ‖h′‖
∥∥∥∥

N∑

n=1

hn ⊗ xn

∥∥∥∥
γ(H,E)

.

Here H ′⊗̂H denotes the Hilbert space tensor product of H ′ and H .

For the proof, just note that if ‖h′‖ is normalised to 1, then the vectors h′ ⊗ hn

are orthonormal in H ′⊗̂H .
A bounded operator T ∈ L (H,E) is said to be γ-summing if

‖T ‖2
γ∞(H,E) := sup

h

E

∥∥∥∥
N∑

n=1

γnThn

∥∥∥∥
2

<∞,

the supremum being taken over all finite orthonormal systems h = (hn)N
n=1 in H .

Endowed with the above norm, the space γ∞(H,E) of all γ-summing operators

from H to E is a Banach space. Every γ-radonifying operator is γ-summing, and the

11



inclusion γ(H,E) ⊆ γ∞(H,E) is isometric. It follows from a theorem of Hoffmann-

Jørgensen and Kwapień that equality γ(H,E) = γ∞(H,E) holds when E does not

contain a closed subspace isomorphic to c0. For proofs and more information we

refer to the survey paper [30] and the references given therein.

Let Φ: R+ → L (H,E) be an H-strongly measurable function, i.e. Φh is strongly

measurable for all h ∈ H , and suppose that Φ∗x∗ ∈ L2(R+;H) for all x∗ ∈ E∗. We

say that an operator R ∈ L (L2(R+;H), E) is represented by Φ if we have

R∗x∗ = Φ∗x∗

in L2(R+;H) for all x∗ ∈ E∗.

A family T of bounded linear operators from a Banach space E to another Banach

space F is called γ-bounded if there exists a finite constant C such that for all finite

sequences (xn)N
n=1 in E and (Tn)N

n=1 in T we have

E

∥∥∥∥
N∑

n=1

γnTnxn

∥∥∥∥
2

6 C2
E

∥∥∥∥
N∑

n=1

γnxn

∥∥∥∥
2

.

The least admissible constant C is called the γ-bound of T , notation γ(T ). An

important way of generating γ-bounded families is due to Weis [45] who showed that

if f : (0, T ) → L (E,F ) is continuously differentiable with integrable derivative, then

Tf = {f(t) : f ∈ (0, T )} is γ-bounded and

(3.2) γ(Tf ) 6 ‖f(0+)‖ +

∫ T

0

‖f ′(t)‖ dt.

An application of this result is contained in Lemma 5.4 below.

We continue with a multiplier result of Kalton and Weis [25] (see [30] for a proof)

which connects the notions of radonification and γ-boundedness.

Lemma 3.7. Let M : (0, T ) → L (E,F ) be a function with the following prop-

erties:

(1) for all x ∈ E the function Mx is strongly measurable;

(2) the rangeM = {M(t) : t ∈ (0, T )} is γ-bounded.
Then for all functions Φ: (0, T ) → L (H,E) representing an operator SΦ ∈
γ(L2(0, T ;H), E), the function MΦ: (0, T ) → L (H,F ) represents an operator

SMΦ ∈ γ∞(L2(0, T ;H), F ) and

‖SMΦ‖γ∞(L2(0,T ;H),F ) 6 γ(M )‖SΦ‖γ(L2(0,T ;H),E).

12



In many situations (such as in the application of this lemma in Section 5) one actu-

ally has SMΦ ∈ γ(L2(0, T ;H), F ), for instance by an application of Theorem 3.11. In

view of the isometric inclusion γ(L2(0, T ;H), F ) ⊆ γ∞(L2(0, T ;H), F ), the estimate

of Lemma 3.7 then takes the form

‖SMΦ‖γ(L2(0,T ;H),F ) 6 γ(M )‖SΦ‖γ(L2(0,T ;H),E).

3.5. Stochastic integration in Banach spaces

LetH be a Hilbert space and (Ω,F ,P) a probability space. A mappingW : H →
L2(Ω) is called an H -isonormal process if W (h) is centred Gaussian for all h ∈ H

and

EW (h1)W (h2) = [h1, h2]H , h1, h2 ∈ H .

By Proposition 3.2 (for 0 < β < 1
2 ), Proposition 3.3 (for

1
2 < β < 1) and the classical

Itô isometry (for β = 1
2 ), for all 0 < β < 1 the mapping

W β : f 7→
∫ T

0

f dW β ,

initially defined for step functions f , has a unique extension to an H
1
2
−β

T− -isonormal

process. This observation suggests the following definition.

Definition 3.8. Let H be a Hilbert space and let 0 < β < 1. An H-cylindrical

Liouville fBm of order β, indexed by [0, T ], is an H
1
2
−β

T− (H)-isonormal process.

Here the Hilbert space

H
1
2
−β

T− (H) := H
1
2
−β

T− (0, T ;H)

is defined in the obvious way using the right fractional integral operators acting in

L2(H) := L2(0, T ;H). It is easy to see that H
1
2
−β

T− (H) can be identified isometrically

with the Hilbert space completion of the tensor product H
1
2
−β

T− ⊗H .

Our next task is to define an integral for E-valued functions with respect to a Li-

ouville fBm, and more generally for L (H,E)-valued functions with respect to an

H-cylindrical Liouville fBm W β
H , where H is a real Hilbert space. We shall proceed

directly with the latter, as the former corresponds to the special case H = R. We

follow [30], which puts the approach of [35] into an abstract format.

For an elementary rank one function Φ: (0, T ) → L (H,E), i.e. a function of the

form

Φ = f ⊗ (h⊗ x),

13



where f ∈ H
1
2
−β

T− and h ⊗ x ∈ L (H,E) is the rank one operator h′ 7→ [h′, h]x, we

define ∫ T

0

Φ dW β
H := W β

H(f ⊗ h) ⊗ x.

This definition is extended by linearity to all finite rank elementary functions Φ:

(0, T ) → L (H,E), i.e. linear combinations of elementary rank one functions. Any

such function

Φ =

N∑

n=1

fn ⊗ (hn ⊗ xn)

defines a finite rank operator RΦ : H
1
2
−β

T− (H) → E by

RΦ :=

N∑

n=1

(fn ⊗ hn) ⊗ xn.

It is immediate to verify that for all x∗ ∈ E∗ we have

R∗
Φx

∗ = Φ∗x∗ =

N∑

n=1

〈xn, x
∗〉(fn ⊗ hn)

as elements of H
1
2
−β

T− (H). Applying the results of [30], [35] to the Hilbert space

H
1
2
−β

T− (H) we obtain

Theorem 3.9 (Itô isometry). Let W β
H be a cylindrical Liouville fBm of order

0 < β < 1. For all elementary finite rank functions Φ: (0, T ) → L (H,E) we have

E

∥∥∥∥
∫ T

0

Φ dW β
H

∥∥∥∥
2

= ‖RΦ‖2

γ(H
1
2
−β

T−
(H),E)

.

As a result, the E-valued stochastic integral with respect to W β
H has a unique

extension to an isometry from γ(H
1
2
−β

T− (H), E) into L2(Ω;E).

Motivated by (3.3) we shall call a function Φ: (0, T ) → L (H,E) stochastically

integrable with respect to W β
H if Φ

∗x∗ ∈ H
1
2
−β

T− (H) for all x∗ ∈ E∗, and there exists

an operator R ∈ γ(H
1
2
−β

T− (H), E) such that

R∗x∗ = Φ∗x∗

in H
1
2
−β

T− (H) for all x∗ ∈ E∗. The operator R, if it exists, is uniquely determined. In

this situation we say that Φ represents R.
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Using the right ideal property for spaces of γ-radonifying operators, applied to the

embeddings H
1
2
−β

T− (H) →֒ L2(0, T ;H) (for 0 < β < 1
2 ) and L

2(0, T ;H) →֒ H
1
2
−β

T− (H)

(for 1
2 < β < 1) we obtain the first part of the following simple consequence of

Theorem 3.9; the second part is proved similarly.

Corollary 3.10. LetW β
H be anH-cylindrical Liouville fBm,WH anH-cylindrical

Brownian motion, and consider a function Φ: (0, T ) → L (H,E).

(1) If 0 < β < 1
2 and Φ is stochastically integrable with respect to W β

H , then Φ is

stochastically integrable with respect to WH as well.

(2) If 1
2 < β < 1 and Φ is stochastically integrable with respect to WH , then Φ is

stochastically integrable with respect to W β
H as well.

In fact, for any two numbers 0 < β1 < β2 < 1, stochastic integrability with respect

to W β1

H implies stochastic integrability with respect to W β2

H .

We proceed with two further sufficient conditions for stochastic integrability. In

both we assume that W β
H is an H-cylindrical Liouville fBm of order β and WH is an

H-cylindrical Brownian motion.

The first theorem is a simple adaptation of a result due to Kalton and Weis for

β = 1
2 and H = R [25].

Theorem 3.11. Let 0 < β < 1
2 . If Φ: (0, T ) → γ(H,E) is a continuously

differentiable function that satisfies

∫ T

0

tβ‖Φ′(t)‖γ(H,E) dt <∞,

then Φ is stochastically integrable with respect to W β
H and we have

(
E

∥∥∥∥
∫ T

0

Φ dW β
H

∥∥∥∥
2)1

2

6 CβT
β‖Φ(T−)‖γ(H,E) + Cβ

∫ T

0

tβ‖Φ′(t)‖γ(H,E) dt,

where Cβ = 1/
√

2β Γ(1
2 + β).

P r o o f. Put g(s, t) := 1(t,T )(s)f
′(s) for s, t ∈ (0, T ). Then,

f(t) = f(T−)−
∫ T

0

g(s, t) ds

for all t ∈ (0, T ). Due to Lemma 2.3, for almost all s ∈ (0, T ) the function t 7→
g(s, t) = 1(t,T )(s)f

′(s) = 1(0,s)(t)f
′(s) belongs to γ(H

1
2
−β

T− (H), E) with the norm

‖1(·,T )(s)f
′(s)‖

γ(H
1
2
−β

T−
(H),E)

= ‖1(0,s)‖
H

1
2
−β

T−

‖f ′(s)‖γ(H,E)

= Cβs
β‖f ′(s)‖γ(H,E).
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It follows that the γ(H
1
2
−β

T− (H), E)-valued function s 7→ g(s, ·) is Bochner integrable.
Identifying the operator f(T−) ∈ γ(H,E) with the constant function 1(0,T )f(T−) ∈
γ(H

1
2
−β

T− (H), E), we find that f ∈ γ(H
1
2
−β

T− (H), E) and

‖f‖
γ(H

1
2
−β

T−
(H),E)

6 CβT
β‖f(T−)‖γ(H,E) +

∫ T

0

‖g(s, ·)‖
γ(H

1
2
−β

T−
(H),E)

ds

= CβT
β‖f(T−)‖γ(H,E) + Cβ

∫ T

0

sβ‖f ′(s)‖γ(H,E) ds.

�

The second theorem gives an improvement to Corollary 3.10 (2).

Theorem 3.12. Let 1
2 < β < 1 and 0 6 α < β − 1

2 . If Φ: (0, T ) → L (H,E) is

stochastically integrable with respect to WH , then

t 7→ tαΦ(t)

is stochastically integrable with respect to W β
H .

P r o o f. This is proved in the same way as Corollary 3.10 (2), except that now

we apply the right ideal property of γ-radonifying operators, now applied to the

bounded operator Kα,β on L
2(0, T ;H),

Kα,βf(t) := t−αI
β− 1

2

0+ f(t).

�

4. Comparison with classical fBm

In this section we compare the Liouville fBm W β with the classical fBm, that is,

a Gaussian process (W̃ β(t))t∈[0,T ] with covariance

EW̃ β(s)W̃ β(t) = s2β + t2β − |t− s|2β ,

where β ∈ (0, 1) is the so-called Hurst parameter. Brownian motion again corre-

sponds to the case β = 1
2 . For a review of the theory of stochastic integration with

respect to the classical fBm we refer to [3], [36].

Let H β and H̃ β be the Hilbert spaces obtained as the completions of the step

functions with respect to the scalar products

[1(0,s), 1(0,t)]H β := EW β(s)W β(t)
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and

[1(0,s), 1(0,t)]H̃ β := EW̃ β(s)W̃ β(t)

for the Liouville fBm and the classical fBm, respectively.

Proposition 4.1. For all 0 < β < 1
2 we haveH β = H̃ β = H

1
2
−β

T− with equivalent

norms.

P r o o f. We have already seen that H β = H
1
2
−β

T− isometrically. The fact that

H̃ β = H
1
2
−β

T− up to an equivalent norm is well known; see [2, Proposition 8], [3,

Formulas (2.27)], and [10]. �

By the very definition of an isonormal process we have the Itô isometry

E

∣∣∣∣
∫ T

0

f dW β
H

∣∣∣∣
2

= ‖f‖2
H β .

Similarly, it is well known [3], [36] that

E

∣∣∣∣
∫ T

0

f dW̃ β
H

∣∣∣∣
2

= ‖f‖2
H̃ β ,

where W̃ β
H is the H-cylindrical classical fBm. Having observed the latter, we can

repeat the constructions of the previous section and obtain analogues of our results

for the classical fBm with Hurst parameter 0 < β < 1
2 . The following result relates

the two stochastic integrals.

Theorem 4.2. Let 0 < β < 1
2 . For a function Φ: (0, T ) → L (H,E) the following

are equivalent:

(1) Φ is stochastically integrable with respect to W̃ β
H ;

(2) Φ is stochastically integrable with respect to W β
H .

In this situation we have

E

∥∥∥∥
∫ T

0

Φ dW̃ β
H

∥∥∥∥
2

≃ E

∥∥∥∥
∫ T

0

Φ dW β
H

∥∥∥∥
2

with two-sided constants independent of Φ.

P r o o f. In view of Proposition 4.1, the first assertion is immediate from Theo-

rem 3.9 and its counterpart for the classical fBm (which again holds by the abstract

results of [30], now applied to the Hilbert space H̃β). To prove equivalence of the

norms, we first observe that for all x∗ ∈ E∗,

E

∣∣∣∣
∫ T

0

Φ∗x∗ dW β
H

∣∣∣∣
2

= ‖Φ∗x∗‖2
H̃β
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and similarly

E

∣∣∣∣
∫ T

0

Φ∗x∗ dW̃ β
H

∣∣∣∣
2

= ‖Φ∗x∗‖2
H̃β .

Hence by Proposition 4.1,

E

∣∣∣∣
∫ T

0

Φ∗x∗ dW β
H

∣∣∣∣
2

≃ E

∣∣∣∣
∫ T

0

Φ∗x∗ dW̃ β
H

∣∣∣∣
2

with two-sided constants independent of Φ and x∗. The result now follows from

a standard comparison result for Banach space-valued Gaussian random variables.

�

Remark 4.3. For 1
2 < β < 1, the spaces H β and H̃ β are different: the former

consists of all distributions ψ such that I
β− 1

2

T− ψ ∈ L2, whereas the latter consists of

those distributions for which

s 7→ s
1
2
−β(I

β− 1
2

T− (u 7→ uβ− 1
2ψ(u)))(s) ∈ L2.

See [3, Formula 2.18].

5. Evolution equations driven by Liouville fBm

In this section we shall apply the results of the previous sections to study the

stochastic abstract Cauchy problem

(sACP)

{
dU(t) = AU(t) dt+B dW β

H(t), t ∈ [0, T ],

U(0) = x.

Here A is the generator of a C0-semigroup S = {S(t)}t>0 on E, B ∈ L (H,E) is

a given bounded linear operator, and W β
H is a Liouville cylindrical fBm of order

0 < β < 1 on a probability space (Ω,F ,P).

If, for all t > 0, the L (H,E)-valued function S(t−·)B is stochastically integrable
on (0, t) with respect to W β

H , the process

(5.1) Ux(t) = S(t)x+

∫ t

0

S(t− s)B dW β
H(s)

is called the mild solution of (sACP). It is an easy consequence of the definition of

the stochastic integral that the process Ux is strongly measurable as a mapping from

[0,∞) × Ω into E.
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The next theorem asserts the existence of a mild solution in the case where the

Banach space E is of type 2 and the operator B is γ-radonifying. To some extent

this could be seen as a generalization of some results from [4], [35]; see also [6] where

the case of equations driven by a non-Gaussian Lévy process is considered.

Theorem 5.1. Let S be a C0-semigroup on a Banach space E with type p ∈ (1, 2].

Then for all β ∈ (1/p, 1) and B ∈ γ(H,E) the function S(t − ·)B is stochastically
integrable on (0, t) with respect to W β

H for all t > 0. As a consequence, the prob-

lem (sACP) has a unique mild solution U which is given by (5.1).

P r o o f. First assume that E has type 2. In that case, we have a continuous

embedding

L2(0, T ; γ(H,E)) →֒ γ(L2(0, T ;H), E).

Evidently, S(·)B belongs to L2(0, T ; γ(H,E)), and therefore this function is stochas-

tically integrable with respect to H-cylindrical Brownian motions WH . The result

then follows from Corollary 3.10.

Next, assume that 1 < p < 2. By the results of [24], [33], for a Banach space E

with type p we have a continuous embedding

B
1
p
− 1

2

p,p (0, T ; γ(H,E)) →֒ γ(L2(0, T ;H), E).

By [43, Theorem 4.6.1] one has continuous embeddings

Hβ− 1
2 (0, T ; γ(H,E)) →֒ B

β− 1
2

2,2 (0, T ; γ(H,E)) →֒ B
1
p
− 1

2

p,p (0, T ; γ(H,E)).

Combining them, we obtain a continuous embedding

Hβ− 1
2 (0, T ; γ(H,E)) →֒ γ(L2(0, T ;H), E).

Recalling that this embedding is given, for finite element rank functions, by

f ⊗ (h⊗ x) 7→ (f ⊗ h) ⊗ x,

the isometry I
β− 1

2

T− : L2(0, T ) 7→ H
β− 1

2

T− induces a continuous embedding

(5.2) L2(0, T ; γ(H,E)) →֒ γ(H
1
2
−β(0, T ;H), E).

Now we may apply Theorem 3.9. �

This result is sharp in the following sense.

19



Example 5.2. Suppose 1
2 < β < 1 is given. Then for any 1 6 p < 1/β there

exists a Banach space E with type p, a C0-semigroup S with a generator A on E,

and a vector x ∈ E for which the problem

(5.3)

{
dU(t) = AU(t) dt+ xdwβ(t), t ∈ [0, T ],

U(0) = 0,

fails to have a mild solution. Here, wβ is a real-valued Liouville fBm with Hurst

parameter β. Note that (5.3) corresponds to the special case of (sACP) for H = R

(identifying x ∈ E with 1 ⊗ x ∈ γ(R;E)).

Indeed, let 1 6 p < 1/β. On E := Lp(0, T ), let S denote the left translation

semigroup on E,

S(t)x(s) =

{
x(s+ t), s+ t < T,

0, otherwise.

By combining Theorem 3.9 and [5, Theorem 2.3] (see also [34, Lemma 2.1]), for

a given x ∈ Lp(0, T ) the problem (5.3) has a weak solution if only if S(·)x defines an
element of γ(H

1
2
−β , Lp(0, T )) ≃ Lp(0, T ;H

1
2
−β) (we need not worry about boundary

conditions since 0 < β − 1
2 <

1
2 ; see the remarks at the end of Section 2).

Let us now suppose that this is true for all x ∈ Lp(0, T ). Fix a number 0 < δ < T

and consider an arbitrary function x ∈ Lp(0, T ) with support in (δ, T ). For almost

all t ∈ (0, T ) it follows that s 7→ S(t)x(s) = 1{s+t<T}x(s + t) belongs to H
1
2
−β. In

particular, it follows that s 7→ x(s + t) belongs to H
1
2
−β for almost all t ∈ (0, δ).

This function being identically zero on the intervals (0, δ − t) and (T − t, T ), it is

immediate to see that its restriction to (δ − t, T − t) belongs to H
1
2
−β(δ − t, T − t).

This implies that s 7→ x(s) is in H
1
2
−β(δ, T ).

By the closed graph theorem, this proves that we have a continuous inclusion

Lp(δ, T ) →֒ H
1
2
−β(δ, T ). This is the same as saying that the fractional integral

operator I
β− 1

2

T− acts boundedly from Lp(δ, T ) to L2(δ, T ). The latter is known to be

false if β < 1/p.

Hence there must exist x ∈ Lp(0, T ) for which the problem (5.3) has no mild

solution.

Remark 5.3. By a result of Veraar (in preparation), for p-concave Banach lat-

tices E (such spaces have type p) one has a continuous embedding

Lp(0, T ; γ(H,E)) →֒ γ(H
1
2
− 1

p (0, T ;H), E)

and therefore (5.2) holds with β = 1/p. As a consequence, for such spaces E,

Theorem 5.1 also holds for the critical exponent β = 1/p. We do not know whether

this extends to arbitrary Banach spaces with type p.
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We return to the setting where E is an arbitrary real Banach space. In the proof

of the next theorem we will need the following result, which is a direct consequence

of (3.2) combined with standard estimates for analytic semigroups (cf. [41]):

Lemma 5.4. Let A generate an analytic C0-semigroup E. Then for all 0 6 θ < η

and large enough w ∈ R the set

{tη(w −A)θS(t)} : t ∈ (0, T )}

is γ-bounded.

The main result of this section is an extension of a result of [40], where it was

assumed that 0 < β < 1
2 and that E is a Hilbert space.

Theorem 5.5. Let 0 < β < 1. If S is an analytic C0-semigroup on an arbitrary

Banach space E, then for all B ∈ γ(H,E) the function S(t − ·)B is stochastically
integrable on (0, t) with respect to W β

H . As a consequence, the problem (sACP) has

a mild solution U given by (5.1). Moreover, for all 1 6 p < ∞ and all α, θ > 0

satisfying α+ θ < β we have

U ∈ Lp(Ω;Cα([0, T ];Eθ)),

where Eθ denotes the fractional domain space of exponent θ associated with A.

Remark 5.6. If 0 < β < 1
2 , Theorem 4.2 enables us to replace the cylindrical

Liouville fBm by a cylindrical fBm.

P r o o f. For 1
2 6 β < 1, the existence of a mild solution follows from the fact that

S(t 7→ ·)B is stochastically integrable on (0, t) with respect to every H-cylindrical

Brownian motion WH and from Corollary 3.10. �

For 0 < β < 1
2 we verify the condition stated in Theorem 3.11. With Φ(t) = S(t)B

we have

tβ‖Φ′(t)‖γ(H,E) = tβ‖AS(t)B‖γ(H,E) 6 Ct−1+β‖B‖γ(H,E),

where C is a constant depending only on T and the semigroup S. Since the function

on the right-hand side is integrable the result follows from Theorem 3.11.

Next we prove the space-time regularity assertion. We follow the proof of [31,

Theorem 10.19]; for the reader’s convenience we include the details. By the Kahane-

Khintchine inequality we may assume that p = 2.

Fix θ > 0 and α > 0 such that α + θ < β. We claim that for all t ∈ [0, T ] the

random U(t) takes its values in Eθ almost surely. We prove this by showing that
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the functions S(t− ·)B are stochastically integrable on (0, t) with respect to W β
H as

L (H,Eθ)-valued functions. Indeed, this follows from Lemmas 5.4 and 3.7, once we

realise three things:

(i) For all 0 < η < θ the set {rηS(r) : r ∈ (0, T )} is γ-bounded in L (E,Eθ) by

Lemma 5.4;

(ii) the function s 7→ (t − s)−ηB represents an operator in γ(H
1
2
−β(0, t;H), E) of

the norm ‖s 7→ (t− s)−η‖
H

1
2
−β(0,t)

‖B‖γ(H,E) by Lemmas 3.4 and 3.6;

(iii) S(t− s)B = [(t− s)ηS(t− s)][(t− s)−ηB].

Variations of this argument will be used repeatedly below.

Fix 0 6 s 6 t 6 T . By the triangle inequality in L2(Ω;E),

(E‖U(t) − U(s)‖2
Eθ

)
1
2 6

(
E

∥∥∥∥
∫ s

0

[S(t− r) − S(s− r)]B dW β(r)

∥∥∥∥
2

Eθ

)1
2

+

(
E

∥∥∥∥
∫ t

s

S(t− r)B dW β(r)

∥∥∥∥
2

Eθ

)1
2

.

Choose λ ∈ R sufficiently large in order that the fractional powers of λ − A exist.

For the first term we have, for any choice of ε > 0 such that α+ θ + ε < β,

E

∥∥∥∥
∫ s

0

[S(t− r) − S(s− r)]B dW β
H(r)

∥∥∥∥
2

Eθ

≃ E

∥∥∥∥
∫ s

0

(s− r)α+θ+ε(λ −A)α+θS(s− r)

× (s− r)−α−θ−ε[S(t− s) − I](λ−A)−αB dW β
H(r)

∥∥∥∥
2

(i)

6 C2
E

∥∥∥∥
∫ s

0

(s− r)−α−θ−ε[S(t− s) − I](λ−A)−αB dW β
H(r)

∥∥∥∥
2

(ii)
= C2‖[S(t− s) − I](λ−A)−αB‖2

γ(H,E)E

∣∣∣∣
∫ s

0

(s− r)−α−θ−ε dW β(r)

∣∣∣∣
2

(iii)
= C2s2β−2α−2θ−2ε‖[S(t− s) − I](λ−A)−α‖2‖B‖2

γ(H,E)

(iv)

6 C2T 2(t− s)2α‖B‖2
γ(H,E),

where the numerical value of C changes from line to line. In (i) we have used Lem-

mas 3.7 and 5.4 in combination with Theorem 3.9. In (ii) we have used Lemma 3.6

and Theorem 3.9 in combination with an approximation argument to see that if

W β is any real-valued Liouville fBm, then for all f ∈ H
1
2
−β

T− and B̃ ∈ γ(H,E),

E

∥∥∥∥
∫ T

0

f(t)B̃ dW β
H(t)

∥∥∥∥
2

= ‖B̃‖2
γ(H,E)E

∣∣∣∣
∫ T

0

f(t) dW β(r)

∣∣∣∣
2

.
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In (iii) we have used Lemma 3.4, and (iv) follows from standard estimates for analytic

semigroups (see [41]).

Similarly,

E

∥∥∥∥
∫ t

s

S(t− r)B dW β
H(r)

∥∥∥∥
2

Eθ

≃ E

∥∥∥∥
∫ t

s

(t− r)β−α(λ−A)θS(t− r)(t − r)−β+αB dW β
H(r)

∥∥∥∥
2

6 C2
E

∥∥∥∥
∫ t

s

(t− r)−β+αB dW β
H(r)

∥∥∥∥
2

= C2‖B‖2
γ(H,E)E

∣∣∣∣
∫ t

s

(t− r)−β+α dW β(r)

∣∣∣∣
2

6 C2
T ‖B‖2

γ(H,E)(t− s)2α.

The first part of the theorem follows by combining these estimates.

For the second part, pick α < α′ < β − θ. Given q > 1, by the above we find

a constant C such that for 0 6 s, t 6 T ,

E‖U(t) − U(s)‖q
Eθ

6 Cq|t− s|α′q.

For q large enough the existence of a version with α-Hölder continuous trajecto-

ries now follows from the Kolmogorov-Chentsov continuity theorem. Finally, U ∈
Lp(Ω;Cα([0, T ];Eθ)) by Fernique’s theorem [13].

6. An example

We will apply our results to prove existence and space-time Hölder regularity of

mild solutions for stochastic partial differential equations of the form

(6.1)






∂u

∂t
(t, x) = A u(t, x) +

∂W β(t, x)

∂t ∂x
, x ∈ O, t ∈ [0, T ],

u(0, x) = 0, x ∈ O,

where O is a bounded C2-domain in R
d and ∂W β(t, x)/∂t∂x denotes a space-time

noise which is ‘white’ in space and ‘Liouville fractional’ of order 0 < β < 1 in time.

We shall assume that A is a second-order uniformly elliptic operator on O of the

form

A f(x) =

d∑

i,j=1

aij(x)
∂2f

∂xi∂xj

(x) +

d∑

j=1

bj(x)
∂f

∂xj

(x) + c(x)f(x).
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The problem (6.1) can be rewritten in the abstract form

(6.2)

{
dU(t) = AU(t) dt+ dW β

L2(O)(t), t ∈ [0, T ],

U(0) = 0,

where W β

L2(O) is an L
2(O)-cylindrical fBm of order β on some probability space

(Ω,F ,P).

Under mild boundedness and regularity assumptions on the coefficients (to be

precise, aij ∈ Cε(O) for some ε > 0 and bj , c ∈ L∞(O)), which we shall henceforth

assume to be satisfied, A generates an analytic C0-semigroup S on L
p(O). Moreover,

A has bounded imaginary powers and hence, by [43], the fractional domain spaces

of A are equal to the the complex interpolation spaces (Lp(O))θ = D((−A)θ) and

given, up to equivalent norms, by

(Lp(O))θ = [Lp(O),D(A)]θ =

{
H2θ,p(O), 0 < θ < 1

2 ,

H2θ,p
0 (O), 1

2 < θ < 1.

In the case β = 1
2 the driving process W

β

L2(O) is an L
2(O)-cylindrical Brownian

motion. In that case, in dimension d = 1 the mild solution U of (6.2) satisfies

U ∈ Lq(Ω;Cα([0, T ];Cγ(O)))

for all 1 6 q < ∞ and α, γ > 0 satisfying 2α + γ < 1
2 ; see [4], [11]. Following the

methods used in these papers (where also more details can be found), for general

0 < β < 1 we may apply Theorem 5.5 in negative extrapolation spaces of Lp(O) of

exponent greater than 1
4d. The regularising properties of the semigroup S then yield

that problem (6.2) admits a mild solution U in Lq(Ω;Cα([0, T ]; (Lp(O))θ− 1
4
d)) ⊆

Lq(Ω;Cα([0, T ];H2θ−1
2
d,p(O))) for all 1 6 q < ∞, provided α, θ > 0 satisfy 1

4d <

θ < 1, θ 6= 1
2 + 1

4d, and α + θ < β. Combining this with the Sobolev embedding

H2η,p(O) →֒ Cγ(O) for γ + d/p < 2η, by taking p large enough we obtain Hölder

continuity of the solution jointly in space and time:

Theorem 6.1. Under the above stated assumptions, the problem (6.2) has a mild

solution U which belongs to Lq(Ω;Cα([0, T ];Cγ(O))) for all 1 6 q <∞ and α, γ > 0

satisfying 2α+ γ < 2β − 1
2d.

In particular, we see that a mild solution with space-time Hölder regularity exists

if 1
4d < β < 1. This contrasts the cylindrical Brownian motion case β = 1

2 where

such solutions only exist in dimension d = 1. Note that in dimension d = 2 and d = 3

we obtain the existence of a space-time Hölder continuous solution for 1
2 < β < 1

and 3
4 < β < 1, respectively.
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Authors’ addresses: Z . B r z e ź n i a k, Department of Mathematics, University of York,
York YO10 5DD, United Kingdom, e-mail: zb500@york.ac.uk; J . M . A . M . v a n N e e r -
v e n, Delft Institute of Applied Mathematics, Delft University of Technology, P.O.Box
5031, 2600 GA Delft, The Netherlands, e-mail: J.M.A.M.vanNeerven@tudelft.nl; D . S a -
l o p e k, School of Mathematics and Statistics, University of New South Wales, Sydney,
NSW, 2052, Australia, e-mail: dm.salopek@unsw.edu.au.

27


		webmaster@dml.cz
	2020-07-03T19:43:13+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document




