660 research outputs found

    Exploring the present state of South African education: Challenges and recommendations

    Get PDF
    In the light of widespread concern about, and continual questioning of, South African education, this paper aims to examine levels of literacy among learners and students in the primary, intersen and senior phases, in the attempt to understand and to address at least some of the issues in the high drop-out and failure rates at tertiary level. The writers suggest that there is no simple solution nor single strategy but that theory and actual practice working together may engender meaningful change. With this aim in mind, 17 stakeholders were interviewed and their responses recorded and carefully analysed

    An Integrated Tool for System Analysis of Sample Return Vehicles

    Get PDF
    The next important step in space exploration is the return of sample materials from extraterrestrial locations to Earth for analysis. Most mission concepts that return sample material to Earth share one common element: an Earth entry vehicle. The analysis and design of entry vehicles is multidisciplinary in nature, requiring the application of mass sizing, flight mechanics, aerodynamics, aerothermodynamics, thermal analysis, structural analysis, and impact analysis tools. Integration of a multidisciplinary problem is a challenging task; the execution process and data transfer among disciplines should be automated and consistent. This paper describes an integrated analysis tool for the design and sizing of an Earth entry vehicle. The current tool includes the following disciplines: mass sizing, flight mechanics, aerodynamics, aerothermodynamics, and impact analysis tools. Python and Java languages are used for integration. Results are presented and compared with the results from previous studies

    Development Of FIAT-Based Thermal Protection System Mass Estimating Relationships For NASA's Multi-Mission Earth Entry Concept

    Get PDF
    Mass Estimating Relationships (MERs) have been developed for use in the Program to Optimize Simulated Trajectories II (POST2) as part of NASA's multi-mission Earth Entry Vehicle (MMEEV) concept. MERs have been developed for the thermal protection systems of PICA and of Carbon Phenolic atop Advanced Carbon-Carbon on the forebody and for SIRCA and Acusil II on the backshell. How these MERs were developed, the resulting equations, model limitations, and model accuracy are discussed herein

    SOS: accountability 2021 September

    Get PDF

    All things great and small

    Get PDF

    Implementation and Simulation Results using Autonomous Aerobraking Development Software

    Get PDF
    An Autonomous Aerobraking software system is currently under development with support from the NASA Engineering and Safety Center (NESC) that would move typically ground-based operations functions to onboard an aerobraking spacecraft, reducing mission risk and mission cost. The suite of software that will enable autonomous aerobraking is the Autonomous Aerobraking Development Software (AADS) and consists of an ephemeris model, onboard atmosphere estimator, temperature and loads prediction, and a maneuver calculation. The software calculates the maneuver time, magnitude and direction commands to maintain the spacecraft periapsis parameters within design structural load and/or thermal constraints. The AADS is currently tested in simulations at Mars, with plans to also evaluate feasibility and performance at Venus and Titan

    Development of FIAT-Based Parametric Thermal Protection System Mass Estimating Relationships for NASA's Multi-Mission Earth Entry Concept

    Get PDF
    Part of NASAs In-Space Propulsion Technology (ISPT) program is the development of the tradespace to support the design of a family of multi-mission Earth Entry Vehicles (MMEEV) to meet a wide range of mission requirements. An integrated tool called the Multi Mission System Analysis for Planetary Entry Descent and Landing or M-SAPE tool is being developed as part of Entry Vehicle Technology project under In-Space Technology program. The analysis and design of an Earth Entry Vehicle (EEV) is multidisciplinary in nature, requiring the application many disciplines. Part of M-SAPE's application required the development of parametric mass estimating relationships (MERs) to determine the vehicle's required Thermal Protection System (TPS) for safe Earth entry. For this analysis, the heat shield was assumed to be made of a constant thickness TPS. This resulting MERs will then e used to determine the pre-flight mass of the TPS. Two Mers have been developed for the vehicle forebaody. One MER was developed for PICA and the other consisting of Carbon Phenolic atop an Advanced Carbon-Carbon composition. For the the backshell, MERs have been developed for SIRCA, Acusil II, and LI-900. How these MERs were developed, the resulting equations, model limitations, and model accuracy are discussed in this poster

    Mirror formation control in the vicinity of an asteroid

    Get PDF
    Two strategies are presented for the positioning and control of a spacecraft formation designed to focus sunlight onto a point on the surface of asteroid, thereby sublimating the material and ejecting debris creating thrust. In the first approach, the formation is located at artficial equilibrium points around the asteroid and controlled using the force from the solar radiation pressure. The second approach determines the optimal periodic formation orbits, subject to the gravitational perturbations from the asteroid, the solar radiation pressure and the control acceleration derived from a control law

    Level Sets of the Takagi Function: Local Level Sets

    Full text link
    The Takagi function \tau : [0, 1] \to [0, 1] is a continuous non-differentiable function constructed by Takagi in 1903. The level sets L(y) = {x : \tau(x) = y} of the Takagi function \tau(x) are studied by introducing a notion of local level set into which level sets are partitioned. Local level sets are simple to analyze, reducing questions to understanding the relation of level sets to local level sets, which is more complicated. It is known that for a "generic" full Lebesgue measure set of ordinates y, the level sets are finite sets. Here it is shown for a "generic" full Lebesgue measure set of abscissas x, the level set L(\tau(x)) is uncountable. An interesting singular monotone function is constructed, associated to local level sets, and is used to show the expected number of local level sets at a random level y is exactly 3/2.Comment: 32 pages, 2 figures, 1 table. Latest version has updated equation numbering. The final publication will soon be available at springerlink.co
    corecore