57,142 research outputs found
Should Optimal Designers Worry About Consideration?
Consideration set formation using non-compensatory screening rules is a vital
component of real purchasing decisions with decades of experimental validation.
Marketers have recently developed statistical methods that can estimate
quantitative choice models that include consideration set formation via
non-compensatory screening rules. But is capturing consideration within models
of choice important for design? This paper reports on a simulation study of a
vehicle portfolio design when households screen over vehicle body style built
to explore the importance of capturing consideration rules for optimal
designers. We generate synthetic market share data, fit a variety of discrete
choice models to the data, and then optimize design decisions using the
estimated models. Model predictive power, design "error", and profitability
relative to ideal profits are compared as the amount of market data available
increases. We find that even when estimated compensatory models provide
relatively good predictive accuracy, they can lead to sub-optimal design
decisions when the population uses consideration behavior; convergence of
compensatory models to non-compensatory behavior is likely to require
unrealistic amounts of data; and modeling heterogeneity in non-compensatory
screening is more valuable than heterogeneity in compensatory trade-offs. This
supports the claim that designers should carefully identify consideration
behaviors before optimizing product portfolios. We also find that higher model
predictive power does not necessarily imply better design decisions; that is,
different model forms can provide "descriptive" rather than "predictive"
information that is useful for design.Comment: 5 figures, 26 pages. In Press at ASME Journal of Mechanical Design
(as of 3/17/15
Development of fine diameter mullite fiber
Results are presented of a program to develop and evaluate mullite fiber with a mean diameter under two microns. The two micron fiber is produced by a blowing process at room temperature from a low viscosity (10-25 poise) solution. The blown fiber was evaluated for dimensional stability in thermal cycling to 1371 C, and was equivalent to the 5 micron spun B and W mullite fiber. An additive study was conducted to evaluate substitutes for the boron. Three levels of chromium, lithium fluoride, and magnesium were added to the standard composition in place of boron and the fiber produced was evaluated for chemical and dimensional stability in thermal cycling to 1371 C. The magnesium was the most chemically stable, but the chrome additive imparted the best dimensional stability
Single and Many Particle Correlation Functions and Uniform Phase Bases for Strongly Correlated Systems
The need for suitable many or infinite fermion correlation functions to
describe some low dimensional strongly correlated systems is discussed. This is
linked to the need for a correlated basis, in which the ground state may be
postive definite, and in which single particle correlations may suffice. A
particular trial basis is proposed, and applied to a certain quasi-1D model.
The model is a strip of the 2D square lattice wrapped around a cylinder, and is
related to the ladder geometries, but with periodic instead of open boundary
conditions along the edges. Analysis involves a novel mean-field approach and
exact diagonalisation. The model has a paramagnetic region and a Nagaoka
ferromagnetic region. The proposed basis is well suited to the model, and
single particle correlations in it have power law decay for the paramagnet,
where the charge motion is qualitatively hard core bosonic. The mean field also
leads to a BCS-type model with single particle long range order.Comment: 23 pages, in plain tex, 12 Postscript figures included. Accepted for
publication in J.Physics : Condensed Matte
Spin density wave in oxypnictide superconductors in a three-band model
The spin density wave and its temperature dependence in oxypnictide are
studied in a three-band model. The spin susceptibilities with various
interactions are calculated in the random phase approximation(PPA). It is found
that the spin susceptibility peaks around the M point show a spin density
wave(SDW) with momentum (0, ) and a clear stripe-like spin configuration.
The intra-band Coulomb repulsion enhances remarkably the SDW but the Hund's
coupling weakens it. It is shown that a new resonance appears at higher
temperatures at the point indicating the formation of a paramagnetic
phase. There is a clear transition from the SDW phase to the paramagnetic
phase.Comment: 4 pages,8 figure
PAMELA: An Open-Source Software Package for Calculating Nonlocal Exact Exchange Effects on Electron Gases in Core-Shell Nanowires
We present a new pseudospectral approach for incorporating many-body,
nonlocal exact exchange interactions to understand the formation of electron
gases in core-shell nanowires. Our approach is efficiently implemented in the
open-source software package PAMELA (Pseudospectral Analysis Method with
Exchange & Local Approximations) that can calculate electronic energies,
densities, wavefunctions, and band-bending diagrams within a self-consistent
Schrodinger-Poisson formalism. The implementation of both local and nonlocal
electronic effects using pseudospectral methods is key to PAMELA's efficiency,
resulting in significantly reduced computational effort compared to
finite-element methods. In contrast to the new nonlocal exchange formalism
implemented in this work, we find that the simple, conventional
Schrodinger-Poisson approaches commonly used in the literature (1) considerably
overestimate the number of occupied electron levels, (2) overdelocalize
electrons in nanowires, and (3) significantly underestimate the relative energy
separation between electronic subbands. In addition, we perform several
calculations in the high-doping regime that show a critical tunneling depth
exists in these nanosystems where tunneling from the core-shell interface to
the nanowire edge becomes the dominant mechanism of electron gas formation.
Finally, in order to present a general-purpose set of tools that both
experimentalists and theorists can easily use to predict electron gas formation
in core-shell nanowires, we document and provide our efficient and
user-friendly PAMELA source code that is freely available at
http://alum.mit.edu/www/usagiComment: Accepted by AIP Advance
On l-adic representations for a space of noncongruence cuspforms
This paper is concerned with a compatible family of 4-dimensional \ell-adic
representations \rho_{\ell} of G_\Q:=\Gal(\bar \Q/\Q) attached to the space of
weight 3 cuspforms S_3 (\Gamma) on a noncongruence subgroup \Gamma \subset \SL.
For this representation we prove that: 1.)It is automorphic: the L-function
L(s, \rho_{\ell}^{\vee}) agrees with the L-function for an automorphic form for
\text{GL}_4(\mathbb A_{\Q}), where \rho_{\ell}^{\vee} is the dual of
\rho_{\ell}. 2.) For each prime p \ge 5 there is a basis h_p = \{h_p ^+, h_p ^-
\} of S_3 (\Gamma) whose expansion coefficients satisfy 3-term Atkin and
Swinnerton-Dyer (ASD) relations, relative to the q-expansion coefficients of a
newform f of level 432. The structure of this basis depends on the class of p
modulo 12. The key point is that the representation admits a
quaternion multiplication structure in the sense of a recent work of Atkin, Li,
Liu and Long.Comment: Second revised version. To appear: Proceedings of the American
Mathematical Societ
Studies of molecular properties of polymeric materials
Aerospace environment effects (high energy electrons, thermal cycling, atomic oxygen, and aircraft fluids) on polymeric and composite materials considered for structural use in spacecraft and advanced aircraft are examined. These materials include Mylar, Ultem, and Kapton. In addition to providing information on the behavior of the materials, attempts are made to relate the measurements to the molecular processes occurring in the material. A summary and overview of the technical aspects are given along with a list of the papers that resulted from the studies. The actual papers are included in the appendices and a glossary of technical terms and definitions is included in the front matter
Solving the Dirac equation with nonlocal potential by Imaginary Time Step method
The Imaginary Time Step (ITS) method is applied to solve the Dirac equation
with the nonlocal potential in coordinate space by the ITS evolution for the
corresponding Schr\"odinger-like equation for the upper component. It is
demonstrated that the ITS evolution can be equivalently performed for the
Schr\"odinger-like equation with or without localization. The latter algorithm
is recommended in the application for the reason of simplicity and efficiency.
The feasibility and reliability of this algorithm are also illustrated by
taking the nucleus O as an example, where the same results as the
shooting method for the Dirac equation with localized effective potentials are
obtained
- …
