1,772 research outputs found

    Shell Cracking In Investment Casting with Laser Stereolithography Patterns

    Get PDF
    This paper presents an investigation of ceramic shell cracking during the burnout process in investment casting with internally webbed laser stereolithography patterns. We hypothesize that shell cracking will occur when the rupture temperature of the ceramic shell is lower than both the glass transition temperature of the pattern material and the web· link buckling temperature. The hypothesis is validated by our experimental observations which confirm the numerical predictions from our fillite element analysis. This provides a basis for design of the internal web geometry of a lithography pa.tternand evaluation ofthe burnolltprocesswithsuch a pattern. We show the shell cracking and web link buckling temperatures to be functiollsofthe pattern geometry (including the cross~sectional dimensions and span length of the web link) and the shell thickness.Mechanical Engineerin

    Planning Optimal Robot Trajectories by Cell Mapping

    Get PDF
    A cell-mapping method is introduced for planning global trajectories of robotic manipulators in cases where the cell space is composed of combination pairs of plane cells. With the proposed method, optimal trajectory problems in the free field and in the obstacle-constrained field are studied. Two numerical examples are given to show the obtained optimal trajectories and controls

    Aqueous-Based Extrusion Fabrication of Ceramics on Demand

    Get PDF
    Aqueous-Based Extrusion Fabrication is an additive manufacturing technique that extrudes ceramic slurries of high solids loading layer by layer for part fabrication. The material reservoir in a previously developed system has been modified to allow for starting and stopping of the extrusion process on demand. Design pros and cons are examined and a comparison between two material reservoir designs is made. Tests are conducted to determine the optimal deposition parameters for starting and stopping the extrudate on demand. The collected test data is used for the development of a deposition strategy that improves material deposition consistency, including reduced material buildup at sharp corners. Example parts are fabricated using the deposition strategy and hardware design.Mechanical Engineerin

    Interactions of an Additive Manufacturing Program with Society

    Get PDF
    Additive Manufacturing (AM) has shown considerable promise for the future but also proposes some challenges. Many AM barriers tend to be non-technical and instead are human-centric issues such as lack of education of practitioners in AM capabilities, cultural differences, vested interests, and potentially lack of imagination. It is highly desirable for all research and educational institutions to help address these issues. This paper summarizes the additive manufacturing research and education program at the Missouri University of Science and Technology (Missouri S&T) and its interactions with various constituents, including K-12 students, undergraduate and graduate students, distance students, and industry

    Datasets and Benchmarks for Nanophotonic Structure and Parametric Design Simulations

    Full text link
    Nanophotonic structures have versatile applications including solar cells, anti-reflective coatings, electromagnetic interference shielding, optical filters, and light emitting diodes. To design and understand these nanophotonic structures, electrodynamic simulations are essential. These simulations enable us to model electromagnetic fields over time and calculate optical properties. In this work, we introduce frameworks and benchmarks to evaluate nanophotonic structures in the context of parametric structure design problems. The benchmarks are instrumental in assessing the performance of optimization algorithms and identifying an optimal structure based on target optical properties. Moreover, we explore the impact of varying grid sizes in electrodynamic simulations, shedding light on how evaluation fidelity can be strategically leveraged in enhancing structure designs.Comment: 31 pages, 31 figures, 4 tables. Accepted at the 37th Conference on Neural Information Processing Systems (NeurIPS 2023), Datasets and Benchmarks Trac

    Modeling the aggregated exposure and responses of bowhead whales Balaena mysticetus to multiple sources of anthropogenic underwater sound

    Get PDF
    Potential responses of marine mammals to anthropogenic underwater sound are usually assessed by researchers and regulators on the basis of exposure to a single, relatively loud sound source. However, marine mammals typically receive sounds from multiple, dynamic sources. We developed a method to aggregate modeled sounds from multiple sources and estimate the sound levels received by individuals. To illustrate the method, we modeled the sound fields of 9 sources associated with oil development and estimated the sound received over 47 d by a population of 10 000 simulated bowhead whales Balaena mysticetus on their annual migration through the Alaskan Beaufort Sea. Empirical data were sufficient to parameterize simulations of the distribution of individual whales over time and their range of movement patterns. We ran 2 simulations to estimate the sound exposure history and distances traveled by bowhead whales: one in which they could change their movement paths (avert) in response to set levels of sound and one in which they could not avert. When animals could not avert, about 2% of the simulated population was exposed to root mean square (rms) sound pressure levels (SPL) \u3e = 180 dB re 1 mu Pa, a level that regulators in the U.S. often associate with injury. When animals could avert from sound levels that regulators often associate with behavioral disturbance (rms SPL \u3e 160 dB re 1 mu Pa), \u3c 1% of the simulated population was exposed to levels associated with injury. Nevertheless, many simulated bowhead whales received sound levels considerably above ambient throughout their migration. Our method enables estimates of the aggregated level of sound to which populations are exposed over extensive areas and time periods

    Magnetism dependent phonon anomaly in LaFeAsO observed via inelastic x-ray scattering

    Get PDF
    The phonon dispersion was measured at room temperature along (0,0,L) in the tetragonal phase of LaFeAsO using inelastic x-ray scattering. Spin-polarized first-principles calculations imposing various types of antiferromagnetic order are in better agreement with the experimental results than nonmagnetic calculations, although the measurements were made well above the magnetic ordering temperature, T_N. Splitting observed between two A_{1g} phonon modes at 22 and 26 meV is only observed in spin-polarized calculations. Magneto-structural effects similar to those observed in the AFe_2As_2 materials are confirmed present in LaFeAsO. The presence of Fe-spin is necessary to find reasonable agreement of the calculations with the measured spectrum well above T_N. On-site Fe and As force constants show significant softening compared to nonmagnetic calculations, however an investigation of the real-space force constants associates the magnetoelastic coupling with a complex renormalization instead of softening of a specific pairwise force.Comment: 7 pages, 4 figure

    3D Printing of a Polymer Bioactive Glass Composite for Bone Repair

    Get PDF
    A major limitation of synthetic bone repair is insufficient vascularization of the interior region of the scaffold. In this study, we investigated the 3D printing of adipose derived mesenchymal stem cells (AD-MSCs) with polycaprolactone (PCL)/bioactive glass composite in a single process. This offered a three-dimensional environment for complex and dynamic interactions that govern the cell’s behavior in vivo. Borate based bioactive (13-93B3) glass of different concentrations (10 to 50 weight %) was added to a mixture of PCL and organic solvent to make an extrudable paste. AD-MSCs suspended in Matrigel was extruded as droplets using a second syringe. Scaffolds measuring 10x10x1 mm3 in overall dimensions with a filament width of ~500 μm and pore sizes ranging from 100 to 200 μm were fabricated. Strut formability dependence on paste viscosity, scaffold integrity, and printing parameters for droplets of ADMSCs suspended in Matrigel were investigated
    • …
    corecore