259 research outputs found

    Frequency shift keying in vortex-based spin torque oscillators

    Full text link
    Vortex-based spin-torque oscillators can be made from extended spin valves connected to an electrical nanocontact. We study the implementation of frequency shift keying modulation in these oscillators. Upon a square modulation of the current in the 10 MHz range, the vortex frequency follows the current command, with easy identification of the two swapping frequencies in the spectral measurements. The frequency distribution of the output power can be accounted for by convolution transformations of the dc current vortex waveform, and the current modulation. Modeling indicates that the frequency transitions are phase coherent and last less than 25 ns. Complementing the multi-octave tunability and first-class agility, the capability of frequency shift keying modulation is an additional milestone for the implementation of vortex-based oscillators in RF circuit.Comment: 6 pages, 5 figure

    Agility of vortex-based nanocontact spin torque oscillators

    Full text link
    We study the agility of current-tunable oscillators based on a magnetic vortex orbiting around a point contact in spin-valves. Theory predicts frequency-tuning by currents occurs at constant orbital radius, so an exceptional agility is anticipated. To test this, we have inserted an oscillator in a microwave interferometer to apply abrupt current variations while time resolving its emission. Using frequency shift keying, we show that the oscillator can switch between two stabilized frequencies differing by 25% in less than ten periods. With a wide frequency tunability and a good agility, such oscillators possess desirable figures of merit for modulation-based rf applications.Comment: 3 pages, 3 figure

    Quantized spin wave modes in magnetic tunnel junction nanopillars

    Full text link
    We present an experimental and theoretical study of the magnetic field dependence of the mode frequency of thermally excited spin waves in rectangular shaped nanopillars of lateral sizes 60x100, 75x150, and 105x190 nm2, patterned from MgO-based magnetic tunnel junctions. The spin wave frequencies were measured using spectrally resolved electrical noise measurements. In all spectra, several independent quantized spin wave modes have been observed and could be identified as eigenexcitations of the free layer and of the synthetic antiferromagnet of the junction. Using a theoretical approach based on the diagonalization of the dynamical matrix of a system of three coupled, spatially confined magnetic layers, we have modeled the spectra for the smallest pillar and have extracted its material parameters. The magnetization and exchange stiffness constant of the CoFeB free layer are thereby found to be substantially reduced compared to the corresponding thin film values. Moreover, we could infer that the pinning of the magnetization at the lateral boundaries must be weak. Finally, the interlayer dipolar coupling between the free layer and the synthetic antiferromagnet causes mode anticrossings with gap openings up to 2 GHz. At low fields and in the larger pillars, there is clear evidence for strong non-uniformities of the layer magnetizations. In particular, at zero field the lowest mode is not the fundamental mode, but a mode most likely localized near the layer edges.Comment: 16 pages, 4 figures, (re)submitted to PR

    Spatially resolved ultrafast precessional magnetization reversal

    Full text link
    Spatially resolved measurements of quasi-ballistic precessional magnetic switching in a microstructure are presented. Crossing current wires allow detailed study of the precessional switching induced by coincident longitudinal and transverse magnetic field pulses. Though the response is initially spatially uniform, dephasing occurs leading to nonuniformity and transient demagnetization. This nonuniformity comes in spite of a novel method for suppression of end domains in remanence. The results have implications for the reliability of ballistic precessional switching in magnetic devices.Comment: 17 pages (including 4 figures), submitted to Phys. Rev. Let

    Determinants of the selective toxicity of alloxan to the pancreatic B cell.

    Full text link

    Finite-volume two-pion energies and scattering in the quenched approximation

    Full text link
    We investigate how L\"uscher's relation between the finite-volume energy of two pions at rest and pion scattering lengths has to be modified in quenched QCD. We find that this relation changes drastically, and in particular, that ``enhanced finite-volume corrections" of order L0=1L^0=1 and L−2L^{-2} occur at one loop (LL is the linear size of the box), due to the special properties of the η′\eta' in the quenched approximation. We define quenched pion scattering lengths, and show that they are linearly divergent in the chiral limit. We estimate the size of these various effects in some numerical examples, and find that they can be substantial.Comment: 22 pages, uuencoded, compressed postscript fil

    Understanding nanoscale temperature gradients in magnetic nanocontacts

    Full text link
    We determine the temperature profile in magnetic nanocontacts submitted to the very large current densities that are commonly used for spin-torque oscillator behavior. Experimentally, the quadratic current-induced increase of the resistance through Joule heating is independent of the applied temperature from 6 K to 300 K. The modeling of the experimental rate of the current-induced nucleation of a vortex under the nanocontact, assuming a thermally-activated process, is consistent with a local temperature increase between 150 K and 220 K. Simulations of heat generation and diffusion for the actual tridimensional geometry were conducted. They indicate a temperature-independent efficiency of the heat sinking from the electrodes, combined with a localized heating source arising from a nanocontact resistance that is also essentially temperature-independent. For practical currents, we conclude that the local increase of temperature is typically 160 K and it extends 450 nm about the nanocontact. Our findings imply that taking into account the current-induced heating at the nanoscale is essential for the understanding of magnetization dynamics in nanocontact systems.Comment: 5 pages, 5 figure
    • …
    corecore