5,530 research outputs found

    A hybrid-stress finite element for linear anisotropic elasticity

    Get PDF
    Standard assumed displacement finite elements with anisotropic material properties perform poorly in complex stress fields such as combined bending and shear and combined bending and torsion. A set of three dimensional hybrid-stress brick elements were developed with fully anisotropic material properties. Both eight-node and twenty-node bricks were developed based on the symmetry group theory of Punch and Atluri. An eight-node brick was also developed using complete polynomials and stress basis functions and reducing the order of the resulting stress parameter matrix by applying equilibrium constraints and stress compatibility constraints. Here the stress compatibility constraints must be formulated assuming anisotropic material properties. The performance of these elements was examined in numerical examples covering a broad range of stress distributions. The stress predictions show significant improvement over the assumed displacement elements but the calculation time is increased

    Economic Analysis of High Fertilizer Input, Over-seeded Clover and Native Pasture Production Systems in the Texas Coastal Bend

    Get PDF
    This paper examined the cost and risk of three grazing systems to provide information on economically sustainable systems for cattle producers in the Texas Coastal Bend. Results indicate the medium input (over-seeded clover) grazing system displays first degree stochastic dominance relative to the high input and no input grazing systems.grazing system economics, forage production economics, Crop Production/Industries, Livestock Production/Industries, Production Economics,

    Fragment Coupling and the Construction of Quaternary Carbons Using Tertiary Radicals Generated From tert-Alkyl N-Phthalimidoyl Oxalates By Visible-Light Photocatalysis.

    Get PDF
    The coupling of tertiary carbon radicals with alkene acceptors is an underdeveloped strategy for uniting complex carbon fragments and forming new quaternary carbons. The scope and limitations of a new approach for generating nucleophilic tertiary radicals from tertiary alcohols and utilizing these intermediates in fragment coupling reactions is described. In this method, the tertiary alcohol is first acylated to give the tert-alkyl N-phthalimidoyl oxalate, which in the presence of visible-light, catalytic Ru(bpy)3(PF6)2, and a reductant fragments to form the corresponding tertiary carbon radical. In addition to reductive coupling with alkenes, substitution reactions of tertiary radicals with allylic and vinylic halides is described. A mechanism for the generation of tertiary carbon radicals from tert-alkyl N-phthalimidoyl oxalates is proposed that is based on earlier pioneering investigations of Okada and Barton. Deuterium labeling and competition experiments reveal that the reductive radical coupling of tert-alkyl N-phthalimidoyl oxalates with electron-deficient alkenes is terminated by hydrogen-atom transfer

    A Side of Mercury Not Seen By Mariner 10

    Get PDF
    More than 60,000 images of Mercury were taken at ~29 deg elevation during two sunrises, at 820 nm, and through a 1.35 m diameter off-axis aperture on the SOAR telescope. The sharpest resolve 0.2" (140 km) and cover 190-300 deg longitude -- a swath unseen by the Mariner 10 spacecraft -- at complementary phase angles to previous ground-based optical imagery. Our view is comparable to that of the Moon through weak binoculars. Evident are the large crater Mozart shadowed on the terminator, fresh rayed craters, and other albedo features keyed to topography and radar reflectivity, including the putative huge ``Basin S'' on the limb. Classical bright feature Liguria resolves across the northwest boundary of the Caloris basin into a bright splotch centered on a sharp, 20 km diameter radar crater, and is the brightest feature within a prominent darker ``cap'' (Hermean feature Solitudo Phoenicis) that covers the northern hemisphere between longitudes 140-250 deg. The cap may result from space weathering that darkens via a magnetically enhanced flux of the solar wind, or that reddens low latitudes via high solar insolation.Comment: 7 pages, 4 PDF figures, pdfLaTeX, typos corrected, Fig. 2 modified slightly to add crater diameters not given in published versio

    Earth to Moon Transfer: Direct vs Via Libration Points (L1, L2)

    Get PDF
    For some three decades, the Apollo-style mission has served as a proven baseline technique for transporting flight crews to the Moon and back with expendable hardware. This approach provides an optimal design for expeditionary missions, emphasizing operational flexibility in terms of safely returning the crew in the event of a hardware failure. However, its application is limited essentially to low-latitude lunar sites, and it leaves much to be desired as a model for exploratory and evolutionary programs that employ reusable space-based hardware. This study compares the performance requirements for a lunar orbit rendezvous mission type with one using the cislunar libration point (L1) as a stopover and staging point for access to arbitrary sites on the lunar surface. For selected constraints and mission objectives, it contrasts the relative uniformity of performance cost when the L1 staging point is used with the wide variation of cost for the Apollo-style lunar orbit rendezvous

    Comparison of Algorithms and Parameterisations for Infiltration into Organic-Covered Permafrost Soils

    Get PDF
    Infiltration into frozen and unfrozen soils is critical in hydrology, controlling active layer soil water dynamics and influencing runoff. Few Land Surface Models (LSMs) and Hydrological Models (HMs) have been developed, adapted or tested for frozen conditions and permafrost soils. Considering the vast geographical area influenced by freeze/thaw processes and permafrost, and the rapid environmental change observed worldwide in these regions, a need exists to improve models to better represent their hydrology. In this study, various infiltration algorithms and parameterisation methods, which are commonly employed in current LSMs and HMs were tested against detailed measurements at three sites in Canada’s discontinuous permafrost region with organic soil depths ranging from 0.02 to 3 m. Field data from two consecutive years were used to calibrate and evaluate the infiltration algorithms and parameterisations. Important conclusions include: (1) the single most important factor that controls the infiltration at permafrost sites is ground thaw depth, (2) differences among the simulated infiltration by different algorithms and parameterisations were only found when the ground was frozen or during the initial fast thawing stages, but not after ground thaw reaches a critical depth of 15 to 30 cm, (3) despite similarities in simulated total infiltration after ground thaw reaches the critical depth, the choice of algorithm influenced the distribution of water among the soil layers, and (4) the ice impedance factor for hydraulic conductivity, which is commonly used in LSMs and HMs, may not be necessary once the water potential driven frozen soil parameterisation is employed. Results from this work provide guidelines that can be directly implemented in LSMs and HMs to improve their application in organic covered permafrost soils
    • …
    corecore