
Wilfrid Laurier University Wilfrid Laurier University 

Scholars Commons @ Laurier Scholars Commons @ Laurier 

Geography and Environmental Studies Faculty 
Publications Geography and Environmental Studies 

5-11-2010 

Comparison of Algorithms and Parameterisations for Infiltration Comparison of Algorithms and Parameterisations for Infiltration 

into Organic-Covered Permafrost Soils into Organic-Covered Permafrost Soils 

Yinsou Zhang 
Carleton University 

Sean K. Carey 
Carleton University 

William L. Quinton 
Wilfrid Laurier University, wquinton@wlu.ca 

J. Richard Janowicz 
Yukon Department of Environment 

John W. Pomeroy 
University of Saskatchewan 

See next page for additional authors 

Follow this and additional works at: https://scholars.wlu.ca/geog_faculty 

Recommended Citation Recommended Citation 
Zhang, Yinsou; Carey, Sean K.; Quinton, William L.; Janowicz, J. Richard; Pomeroy, John W.; and 
Flerchinger, Gerald N., "Comparison of Algorithms and Parameterisations for Infiltration into Organic-
Covered Permafrost Soils" (2010). Geography and Environmental Studies Faculty Publications. 2. 
https://scholars.wlu.ca/geog_faculty/2 

This Article is brought to you for free and open access by the Geography and Environmental Studies at Scholars 
Commons @ Laurier. It has been accepted for inclusion in Geography and Environmental Studies Faculty 
Publications by an authorized administrator of Scholars Commons @ Laurier. For more information, please contact 
scholarscommons@wlu.ca. 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Wilfrid Laurier University

https://core.ac.uk/display/143689529?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://scholars.wlu.ca/
https://scholars.wlu.ca/geog_faculty
https://scholars.wlu.ca/geog_faculty
https://scholars.wlu.ca/geog
https://scholars.wlu.ca/geog_faculty?utm_source=scholars.wlu.ca%2Fgeog_faculty%2F2&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholars.wlu.ca/geog_faculty/2?utm_source=scholars.wlu.ca%2Fgeog_faculty%2F2&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarscommons@wlu.ca


Authors Authors 
Yinsou Zhang, Sean K. Carey, William L. Quinton, J. Richard Janowicz, John W. Pomeroy, and Gerald N. 
Flerchinger 

This article is available at Scholars Commons @ Laurier: https://scholars.wlu.ca/geog_faculty/2 

https://scholars.wlu.ca/geog_faculty/2


Hydrol. Earth Syst. Sci., 14, 729–750, 2010
www.hydrol-earth-syst-sci.net/14/729/2010/
doi:10.5194/hess-14-729-2010
© Author(s) 2010. CC Attribution 3.0 License.

Hydrology and
Earth System

Sciences

Comparison of algorithms and parameterisations for infiltration
into organic-covered permafrost soils

Y. Zhang1, S. K. Carey1, W. L. Quinton 2, J. R. Janowicz3, J. W. Pomeroy4, and G. N. Flerchinger5

1Dept. of Geography and Environmental Studies, Carleton University, Ottawa, Canada
2Cold Regions Research Centre, Wilfrid Laurier University, Waterloo, Canada
3Environmental Programs Branch, Yukon Department of Environment, Whitehorse, Canada
4Centre for Hydrology, University of Saskatchewan, Saskatoon, Canada
5Northwest Watershed Research Center, USDA Agricultural Research Service, Boise, USA

Received: 11 August 2009 – Published in Hydrol. Earth Syst. Sci. Discuss.: 4 September 2009
Revised: 6 April 2010 – Accepted: 3 May 2010 – Published: 11 May 2010

Abstract. Infiltration into frozen and unfrozen soils is crit-
ical in hydrology, controlling active layer soil water dy-
namics and influencing runoff. Few Land Surface Models
(LSMs) and Hydrological Models (HMs) have been devel-
oped, adapted or tested for frozen conditions and permafrost
soils. Considering the vast geographical area influenced by
freeze/thaw processes and permafrost, and the rapid environ-
mental change observed worldwide in these regions, a need
exists to improve models to better represent their hydrology.

In this study, various infiltration algorithms and parameter-
isation methods, which are commonly employed in current
LSMs and HMs were tested against detailed measurements at
three sites in Canada’s discontinuous permafrost region with
organic soil depths ranging from 0.02 to 3 m. Field data from
two consecutive years were used to calibrate and evaluate the
infiltration algorithms and parameterisations. Important con-
clusions include: (1) the single most important factor that
controls the infiltration at permafrost sites is ground thaw
depth, (2) differences among the simulated infiltration by
different algorithms and parameterisations were only found
when the ground was frozen or during the initial fast thawing
stages, but not after ground thaw reaches a critical depth of
15 to 30 cm, (3) despite similarities in simulated total infiltra-
tion after ground thaw reaches the critical depth, the choice
of algorithm influenced the distribution of water among the
soil layers, and (4) the ice impedance factor for hydraulic
conductivity, which is commonly used in LSMs and HMs,
may not be necessary once the water potential driven frozen

Correspondence to:Y. Zhang
(yinsuozhang@carleton.ca)

soil parameterisation is employed. Results from this work
provide guidelines that can be directly implemented in LSMs
and HMs to improve their application in organic covered per-
mafrost soils.

1 Introduction

Infiltration of snowmelt or rain into frozen ground or the
unfrozen active layer is a critical hydrological process in
permafrost regions (Woo, 1986) and its simulation is a key
component in almost all process-based Land Surface Mod-
els (LSMs) (e.g. Bonan, 1991; Verseghy, 1991; Desbor-
ough and Pitman, 1998; Gusev and Nasonova, 2003; Dai
et al., 2003) and Hydrological Models (HMs) (e.g. Beven
and Kirkby, 1979; Liang et al., 1994; Yang and Niu, 2003;
Pomeroy et al., 2007; Peckham, 2008). However, math-
ematically quantifying infiltration has always been a chal-
lenge (Smith et al., 2002), due mainly to the heterogeneity
of most natural soils and highly dynamic changes of soil wa-
ter status and hydraulic properties during infiltration. Those
difficulties become extreme in permafrost environments due
to ground thawing/freezing processes and a surface organic
layer that frequently mantles permafrost terrain (Kane and
Stein, 1983; Kane and Chacho, 1990; Slater et al., 1998).
Soil hydraulic properties change rapidly during infiltration
or abruptly within infiltration depth between: (1) frozen and
unfrozen states (Burt and Williams, 1976; Kane and Stein,
1983), (2) saturated and unsaturated conditions (Dingman,
2002; Carey et al., 2007), (3) organic and mineral soils
(Carey and Woo, 2001; Quinton et al., 2008) and (4) even
the upper and lower layers of organic soil (Slaughter and
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730 Y. Zhang et al.: Cold region infiltration algorithms

Kane, 1979; Quinton et al., 2005), which may cause con-
vergence problems for numerical infiltration schemes (e.g.
Zhao et al., 1997) or violate the assumptions for many an-
alytical infiltration schemes (e.g. Green and Ampt, 1911).
Other complicating factors for infiltration in permafrost ter-
rain include macropore-induced preferential flow (Mackay,
1983), ineffective pore spaces in organic soils (Quinton et
al., 2008), and hysteresis effects during thawing and freezing
(Horiguchi and Miller, 1980). Mathematical representation
of infiltration into permafrost soils is poorly developed com-
pared to those in non-permafrost soils (Kane and Chacho,
1990; Luo et al., 2003).

Most early LSMs and HMs do not have an explicit frozen
soil scheme (Luo et al., 2003; Zhang et al., 2008). The
influence of frozen soil on infiltration and runoff is typi-
cally treated with a few simple assumptions such as: (1) liq-
uid soil moisture remains at zero or a small constant value
once the soil temperature passes below 0◦C (e.g. Verseghy.,
1991; Dai et al., 2003), and (2) hydraulic conductivity be-
comes zero once frozen (e.g. Bonan, 1991; Verseghy, 1991;
Dai et al., 2003). Recent improvements of frozen soil pro-
cesses in LSMs and HMs include: (1) soil ice content is ex-
plicitly represented as a diagnostic variable (e.g. Cherkauer
et al., 2003; Niu and Yang, 2006; Nicolsky et al., 2007),
(2) thawing/freezing depth is recognized as a controlling fac-
tor for infiltration/runoff and is dynamically simulated with
improved algorithms, parameterisations and model configu-
rations (e.g. Slater et al., 1998; Kuchment et al., 2000; Yi
et al., 2006; Zhang et al., 2008), (3) variable unfrozen water
content is parameterized using relationships with subfreez-
ing soil temperature (e.g. Li and Koike, 2003; Zhang et al.,
2008), and (4) frozen soil infiltration is allowed based upon
soil ice content or subfreezing soil temperature (Niu and
Yang, 2006; Nicolsky et al., 2007; Pomeroy et al., 2007).
In some cold region hydrological models (e.g. Flerchinger
and Saxton, 1989; Zhao and Gray, 1997; Zhang et al., 2000;
Pomeroy et al., 2007), infiltration schemes for frozen soil
have been explicitly designed. However, their algorithms
vary widely from first order empirical estimation (e.g. Gray
et al., 1985) to complex numerical solutions of the simul-
taneously coupled thermal and moisture transfer equations
with phase changes (e.g. Tao and Gray, 1994; Zhao et al.,
1997). Some models even provide multiple options for in-
filtration simulations during different infiltration stages or
different site conditions (e.g. Pomeroy et al., 2007; Peck-
ham, 2008). Testing and comparison of infiltration schemes
were only found for mineral soil conditions (e.g. Slater et al.,
1998; Cherkauer and Lettenmaier, 1999; Cherkauer et al.,
2003; Niu et al., 2005), and many of them only dealt with
homogeneous soils (e.g. Flerchinger et al., 1988; Zhao et al.,
1997; Boike et al., 1998; Mishra et al., 2003; Chahinian et
al., 2005). The validation of infiltration simulations in or-
ganic covered permafrost soils is extremely scarce due to the
limited quantity and quality of field data in such regions.

In this study, we present a comprehensive review of infil-
tration algorithms and parameterisations and evaluate their
applicability for organic-covered permafrost soils. Selected
algorithms and parameterisations are evaluated using field
data obtained from three organic-covered sites in Canada’s
discontinuous permafrost region. The overall objective is to
provide guidelines for the implementation of appropriate in-
filtration algorithms/parameterisations in LSMs and HMs to
improve their performance in permafrost regions.

2 Review of infiltration algorithms and
parameterisations

2.1 Infiltration algorithms

Infiltration of surface water is controlled by many factors,
including soil depth and its texture profile, soil hydraulic
properties and water status, water supply intensity and pat-
terns, infiltration time, and thawing/freezing depth. Efforts
have been made to numerically solve the water transfer equa-
tion or its coupled form with the heat transfer equation for
non-uniform unfrozen soil infiltration (e.g. Celia et al., 1990;
Ross, 1990;̌Simůnek et al., 2005), or uniform frozen soil in-
filtration (e.g. Harlan, 1973; Guymon and Luthin, 1974; Tao
and Gray, 1994; Zhao et al., 1997; Hansson et al., 2004), but
to the best of our knowledge, no successful application ex-
ists for infiltration problems in non-uniform soil with thaw-
ing/freezing process involved. Moreover, since most of the
infiltration events in cold environments involve large vol-
umes of water flux in a short period, extremely fine resolu-
tions in temporal (seconds or less) and in spatial (centimeters
or less) domains are required to achieve stable numerical so-
lutions (Jame and Norum, 1980; Tao and Gray, 1994; Zhao et
al., 1997; Smith et al., 2002), imposing considerable compu-
tational expense. Consequently, operational LSMs and HMs
rarely utilize numerical schemes for infiltration. Typically,
infiltration is separately calculated using conceptual, empir-
ical or analytical methods and added as a source term to
the numerical scheme, which is used to calculate the heat
transfer and water redistribution within the vadose zone (e.g.
SHAW, Flerchinger and Saxton, 1989; CLASS, Verseghy,
1991; CLM3.5, Oleson et al., 2008). Considering this, nu-
merical infiltration schemes are excluded from this study.

Table 1 lists equations of infiltration algorithms and pa-
rameterisations referenced in this study. Table 2 summarises
most infiltration schemes in current LSMs and HMs that
are applicable for soils involving thawing/freezing. The
conceptual models are typically developed for extreme soil
conditions. For example, examining snowmelt infiltration
in frozen prairie soils, Granger et al. (1984) and Gray et
al. (1985) grouped infiltration patterns into three broad cat-
egories: (1) restricted; for soils with impermeable surface
layers such as ice lenses, (2) unlimited; for soils with a high
percentage of air-filled macropores, and (3) limited; for soils
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Table 1. List of equations.

Equation Number

INF1 = 5(1−SI )SWE0.584 (1)

INF2 =C1S
2.92
0 (1−SI)

1.64
[(273.15−TI/273.15)]−0.45t0.44 (2)

INF3 =

{
Msn θl <θ0−θi

Ks[(θs−θi −θl)
4(1+8θi)

−1 θl = θ0−θi
(3)

INF4 =Ks[1+(θs−θini)ψw/I′] (4)

INF5 =

{
Kw(ψw +Zf)/Zf t < tp

Kw(ψw +Zf +Zp)/Zf t ≥ tp
(5)

INF6 =

{
Ks+C2(t− t0)

−C3 t < tp

Kse
I ′K0/β/(eI

′K0/β−1) t ≥ tp
(6)

logKs(Z)= logKbtm+(logKtop− logKbtm)/[1+(Z/Ztrn)
C4] (7)

Se= (θl −θr)/(θs−θr) (8)

ψ =ψ0S
−1/λ
e (9)

K =KsS
2/λ+3
e =Ks(ψ/ψ0)

−(2+3λ) (10)

ψ =ψ0(θl/θs)
−b (11)

K =Ks(θl/θs)
(2b+3)

=Ks(ψ/ψ0)
−(2+3/b) (12)

ψ =α−1(S
−1/m
e −1)1/n (13)

K = KsS
0.5
e [1−(1−S

1/m
e )m]

2

= Ks[1.0−|αψ |
n−1(1+|αψ |

n)−m]
2/(1+|αψ |

n)m/2
(14)

m= 1−1/n, n> 1 (15)

Se= (θl −θr)/(θ0−θi −θr) (16)

fimp,1 = 10−C5θi (17)

fimp,2 = (1.0−θi/θs)
2 (18)

fimp,3 =

{
(θ0−θi −0.13)/(θ0−0.13) θ0−θi >0.13

0 θ0−θi ≤ 0.13
(19)

ψ =Lf(T −Tf)/[ρlg(T +273.16)] (20)

ET=C6δ(Qn−Qg)/(Lvρl(δ+γ )) (21)

ET=C7[δG(Qn−Qg)+γGEa]/(δG+γ ) (22)

CINF1 =1SWL −Msw+ET (if positive) (23)

CINF2 =1SWT +ET (if positive) (24)

CROF=R+Msn−CINFi (if positive) (25)

Cs
∂T
∂t

=
∂
∂Z

[
KT

∂T
∂Z

]
+ρiLf

∂θi
∂t

−ρlCl
∂qlT
∂Z

−Lv

[
∂qv
∂Z

+
∂ρv
∂t

]
(26)

∂θl
∂t

=
∂
∂Z

[
K(

∂ψ
∂Z

+1)
]
−
ρi
ρl

∂θi
∂t

+
1
ρl

∂qv
∂Z

+U (27)
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732 Y. Zhang et al.: Cold region infiltration algorithms

Table 2. Some conceptual, empirical, analytical and numerical infiltration algorithms and their applications and limitations.

Algorithms Expression/features Assumptions/limitations Applications/references

Conceptual and empirical algorithms

Restricted infiltration Zero infiltration (a) and (c) Frozen soil scheme in early LSMs (e.g.
Bonan, 1991; Verseghy, 1991; Dai et
al., 2003); CHRM (Gray et al., 1985;
Pomeroy et al., 2007)

Unlimited infiltration All surface water infiltrate (b) CHRM (Gray et al., 1985; Pomeroy et al.,
2007)

Instantaneous infiltration All surface water instan-
taneously percolate to the
supra-permafrost water ta-
ble

(b), (d), and (e) ARHYTHM (Zhang et al., 2000)

Gray’s empirical infiltration Snow melt infiltration,
Eq. (1)

(j) and (l) CHRM (Gray et al., 1985; Pomeroy et al.,
2007)

Zhao’s Parametric infiltration Semi-empirical relationship
by regression with numeri-
cal results, Eq. (2)

(f) and (l) Zhao and Gray (1997)

SWAP frozen soil infiltration Semi-empirical relationship
with soil water and ice con-
tent, Eq. (3)

(c) SWAP (Gusev, 1989; Gusev and Na-
sonova, 1998, 2003)

Distributed infiltration scheme Empirical relationships
with topographic index
and/or saturation fractions

(k) and (l) CLM3.5 (Oleson et al., 2008); VISA
(Yang and Niu, 2003); SIMTOP (Niu and
Yang, 2006); TOPMODEL (Beven and
Kirkby, 1979); VIC (Liang et al., 1994;
Cherkauer et al., 2003)

Analytical schemes

Various forms of Green-Ampt Most commonly cited for
infiltration problem; easy to
parameterise e.g. Eq. (4)

(f), (g), (h), (i) and (m) Green and Ampt (1911); BASE (Desbor-
ough and Pitman, 1998); SWAP (Gusev
and Nasonova, 1998); CHRM (Pomeroy
et al. 2007); TopoFlow (Peckham, 2008)

Mein-Larson Two-stage infiltration with
steady water input, Eq. (5)

(f), (g), (i) and (m), (n) Mein and Larson (1973); CLASS
(Verseghy, 1991)

Smith-Parlange Two-stage infiltration with
variable water input, Eq. (6)

(f), (g), (i) and (m) Topoflow (Peckham, 2008)

SHAW infiltration scheme Modified Green-Ampt; ap-
plicable for layered soil

(m) SHAW (Flerchinger et al., 1988;
Flerchinger and Saxton, 1989)

Notes: (a) completely impermeable soil; (b) soils with large air-filled macropores; (c) frozen soil; (d) unfrozen soil or thawed active layer;
(e) with permafrost; (f) uniform soil profile; (g) uniform antecedent water content; (h) constant head ponding at the surface; (i) piston-like
sharp wetting front; (j) cumulative infiltration, no time variable, (k) require spatial topographic information, (l) require parameter calibration;
(m) nearly-saturated flow exists behind the wetting front, (n) constant surface water supply, such as steady rain.

in between the first two categories. For the limited condition,
Eq. (1) was proposed to estimate infiltration amount for
the entire snowmelt season. Zhao et al. (1997) developed
a semi-empirical parametric infiltration scheme (Eq. 2) for
uniform frozen soil, which relates the time dependant infil-
tration to surface and initial saturation ratios, saturated hy-
draulic conductivity and soil temperature. Another category
of semi-empirical schemes is termed “distributed”, which re-

lates probability distributions of infiltration capacity to a cer-
tain topographic index or spatial distribution of soil moisture
(e.g. Beven and Kirkby, 1979; Liang et al., 1994; Niu et al.,
2005). Distributed infiltration algorithms are mainly devel-
oped for regional or global applications (e.g. TOPMODEL,
Beven and Kirkby, 1979; VIC, Cherkauer et al., 2003; VISA,
Yang and Niu, 2003), thus excluded from this point-based
model comparison study.

Hydrol. Earth Syst. Sci., 14, 729–750, 2010 www.hydrol-earth-syst-sci.net/14/729/2010/
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Analytical algorithms are exact solutions of the water
transfer equation (e.g. Richards’ equation) under specific soil
conditions and water supply patterns. Despite their lim-
iting assumptions (Table 2), analytical algorithms are the
most frequently employed algorithms in LSMs and HMs,
due to their solid physical base and ability to obtain pa-
rameters through field measurements, texture associations
(Clapp and Hornberger, 1978) or pedo-transfer functions
(Wösten, 1999; Wagner et al., 2001). The most frequently
cited Green and Ampt (1911) algorithm (Eq. 4) has the fol-
lowing assumptions: (1) uniform soil extending to half in-
finite plane, (2) uniform antecedent water content, (3) con-
stant head ponding at the surface, and (4) a piston-like sharp
wetting front. Among the numerous efforts (e.g. Bouwer,
1969; Smith et al., 2002; Chu and Marino, 2005; Talbot
and Ogden, 2008) in relaxing these assumptions, the two-
stage Mein and Larson (1973) infiltration scheme simulates
both the pre-ponding and ponded infiltration of steady rain
into uniform soil (Eq. 5), while the two-stage Smith and Par-
lange (1978) scheme allows for variable rainfall rates (Eq. 6).
Flerchinger et al. (1988) modified Green and Ampt algorithm
to simulate infiltration into layered non-uniform soil and em-
ployed it in the Simultaneous Heat and Water (SHAW) model
(Flerchinger and Saxton, 1989).

2.2 Essential parameters for simulating infiltration

Practically all of the parameters in Eqs. (1–6) can be de-
termined from basic soil hydraulic properties (i.e.θs, Ks,
ψ0) and characteristics (i.e. relationships among water po-
tential, water content and hydraulic conductivity). In the
context of LSMs and HMs, basic hydraulic properties and
characteristics are typically associated with texture classes
(e.g. Clapp and Hornberger, 1978; Letts et al., 2000) or other
soil attributes such as bulk density or grain-size fraction (e.g.
Wösten, 1999; Wagner et al., 2001). For frozen soils, param-
eterisations of unfrozen water content and ice impedance to
hydraulic conductivity are also crucial to infiltration simula-
tion (Kane and Stein, 1983; Kane and Chacho, 1990; Slater
et al., 1998; Quinton et al., 2008).

2.2.1 Soil hydraulic properties

Field and laboratory measurements ofθ0, θs, ψ0 andKs for
permafrost soil are possible (e.g. Burt and Williams, 1976;
Dingman, 2002; McCauley et al., 2002; Hayashi and Quin-
ton, 2004; Carey et al., 2007; Quinton et al., 2008), yet
not feasible for LSM and HM applications. The most fre-
quently employed texture associations for hydraulic prop-
erties in LSMs and HMs were those compiled by Clapp
and Hornberger (1978) for 11 classes of mineral soils and
by Letts et al. (2000) for 3 classes of organic soils. Both
compilations contain only unfrozen soil samples from non-
permafrost regions. For comparison, Table 3 presents a sum-
mary of hydraulic properties obtained from permafrost soils

and those values from Clapp and Hornberger (1978) and
Letts et al. (2000). To our knowledge, no values ofKs for
frozen organic soil have been reported. LSMs and HMs typi-
cally apply the same value toθ0 andθs (e.g. Verseghy, 1991;
Niu and Yang, 2006). While this could be true for many min-
eral soils, smallerθs vs. θ0 values were frequently observed
for organic soils in permafrost sites (Carey et al., 2007; Quin-
ton et al., 2008), due mainly to the dead-end or self-closed
pores (Hoag and Price, 1997). During soil freezing, effec-
tive pore space is lowered due to the presence of ice, which
blocks pores and therefore reduces both water storage ca-
pacity and conductivity. Frozen soilKs exhibits extremely
large temperature dependence in the small temperature range
just below freezing (Table 3). For example, for a small tem-
perature increase from−0.26◦C to 0◦C, Burt and Williams
(1976) observedKs increase almost 8 orders of magnitude
for a fine sand.Ks of organic soil shows a strong depen-
dence on its state of decomposition, or more apparently, on
soil depth (Z). Quinton et al. (2008) developed a simple re-
lationship betweenKs andZ (Eq. 7) based on field measure-
ments at three organic covered permafrost sites in Canada.
ψ0 is normally estimated from the soil characteristic curve
(Clapp and Hornberger, 1978; van Genuchten, 1980). Most
reportedψ0 for organic soil is close to−0.01 m (Letts et al.,
2000), which is much higher (closer to zero) than those for
mineral soils (Table 3).

2.2.2 Soil hydraulic characteristics

Among the many soil water retention and unsaturated hy-
draulic conductivity curves (see Smith et al., 2002;Šimůnek
et al., 2005), three sets of equations are frequently used in
LSMs and HMs: Brooks and Corey (1964) (BC-Para here-
after), Clapp and Hornberger (1978) (CH-Para hereafter)
and van Genuchten (1980) (VG-Para hereafter). CH-Para
(Eqs. 11 and 12) are simplified forms of BC-Para (Eqs. 8,
9 and 10) if residual moisture contentθr=0 andλ=1/b. These
equations are widely employed in LSMs (e.g. Flerchinger
and Saxton, 1989; Verseghy, 1991; Dai et al., 2003; Niu
and Yang, 2006), due to their simple forms and limited pa-
rameter requirements (Stankovich and Lockington, 1995).
VG-Para (Eqs. 8, 13, 14) are more often applied in HMs
and hydrological studies (e.g.Šimnek et al., 2005; Carey et
al., 2007; Pomeroy et al., 2007), due to their improved fit
of the soil characteristic curve (Stankovich and Lockington,
1995). Modifications for Eq. (8–14) are required for frozen
soils to account for the ice effects. Common treatments
are: (1) replacing total soil water content (θ ) with liquid
water content (θl) (e.g. Flerchinger and Saxton, 1989; Niu
and Yang, 2006), (2) applying an impedance factor (fimp)

to Ks in Eqs. (10), (12) and (14) (e.g. Lutin, 1990; Zhao
and Gray, 1997; Gusev and Nasonova, 1998) and (3) replace
θs with ice-reduced effective porosity (θs−θi), i.e. replacing
Eq. (8) with Eq. (16) (e.g. Zhao and Gray, 1997; Slater et
al., 1998; Soulis and Seglenieks, 2008). The formulations

www.hydrol-earth-syst-sci.net/14/729/2010/ Hydrol. Earth Syst. Sci., 14, 729–750, 2010
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Table 3. Some reported hydrologic properties of permafrost soils and comparison with two sets of frequently cited values used in land
surface and hydrological models.

Soil type
(frozen temperature)

θ0 (m3 m−3) ψ0 (m) K0 (m s−1) Method for K0 and re-
marks

Source

Frozen permafrost soils

Unlensed fine sand
(−0.26–0◦C)

n.a. n.a 2.0×10−12
∼ 1.0×10−4 Lab permeability test for

water mixed with dis-
solved lactose.

Burt and Williams
(1976)

Unlensed slims valley
silt (−0.42–0◦C)

n.a. n.a 2.0×10−10
∼ 4.0×10−7

Densely Lensed Leda
Clay (−0.47–0◦C)

n.a. n.a 1.0×10−11
∼ 5.0×10−9

Silt fraction (4–8 µm)
(−0.15–0◦C )

n.a. n.a 1.1×10−12
∼ 1.3×10−8 Lab permeability test for

pure supercooled water
Horiguchi and Miller
(1980)

Fairbanks silt loam
(0◦C)

0.5 n.a 4.0×10−8 Field infiltration test on
early April. Completely
saturation may not be
reached.

Kane and Stein (1983)

Silty sand (−4◦C) 0.39 n.a 4.0×10−11
∼ 6.4×10−11 Lab permeability test for

a Diesel/Jet fuel mixture. McCauley et al. (2002)
Sandy silt (−4◦C) 0.42 n.a 3.3×10−11

∼ 8.3×10−11

Organic/sand (−4◦C) 0.64 n.a 3.6×10−11
∼ 5.6×10−11

Unfrozen permafrost soils

Various silts and loams 0.42–0.55 n.a. 3.2×10−6
∼ 1.4×10−5 Both lab permeability

tests and filed pumping
tests.

Kane and Stein
(1983); Hinzman et
al. (1991); Carey and
Woo (2001); Mc-
Cauley et al. (2002)

Clay 0.52 n.a. 5.0×10−9 Field pumping tests. Carey and Woo
(2001)

Organic/mineral mixture 0.64∼0.70 n.a. 2.2×10−5
∼ 3.8×10−5 Lab permeability tests Hinzman et al. (1991);

McCauley et al.
(2002)

Upper organic layer 0.8∼0.95 −0.01 5.0×10−5
∼ 1.4×10−2 Both lab permeability

tests and filed pumping
tests.

Slaughter and Kane
(1979); Carey and
Woo (2001); Quinton
et al. (2005, 2008)

Lower organic layer 0.75∼0.9 −0.01 5.0×10−6
∼ 2.5×10−4 Both lab permeability

tests and filed pumping
tests.

Slaughter and Kane
(1979); Carey and
Woo (2001); Quinton
et al. (2005, 2008)

Some values being frequently cited in LSMs and HMs applications

Various sands 0.39∼0.41 −0.09∼ −0.12 1.6×10−4
∼ 1.8×10−4 Both lab permeability

tests and filed pumping
tests. Summarized from
11 soil types

Compiled by Clapp
and Hornberger
(1978)

Various loams 0.42∼0.49 −0.22∼ −0.79 1.7×10−6
∼3.5×10−5

Various clays 0.43∼0.49 −0.15∼ −0.49 1.0×10−6
∼ 2.2×10−6

Fabric peat 0.93 −0.0103 2.8×10−4 Both lab permeability
tests and filed pumping
tests. Median of the col-
lections.

Complied by Letts et
al. (2000)

Hemic peat 0.88 −0.0102 2.0×10−6

Sapric peat 0.83 −0.0101 1.0×10−7
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Table 4. Soil texture profile and hydraulic parameters at the three study sites.Bold values are in situ measurements, others are estimated from
the texture classes.θs ,ψ0,Ks andb are derived by curve-fitting or estimated based on soil texture.θr is based on the minimum soil liquid
water content achieved during drying or freezing.Tf is estimated from the measured soil temperature–unfrozen soil water relationships.

Site (coordinates) Scotty Creek Peat Plateau Site Wolf Creek Forest Site Wolf Creek Alpine Site
(61◦18′ N; 121◦18′ W, 280 m) (60◦36′ N; 134◦57′ W, 750 m) (60◦34′ N; 135◦09′ W, 1615 m)

Depth [m] 0–0.1 0.1–0.2 0.2–3.0 >3.0 0–0.1 0.1–0.2 0.2–0.4 0.4–1.4 >1.4 0–0.05 0.05–
0.1

0.1–0.2 >0.2

Texture surface
organic

peat peat clayey
till

surface
organic

loam sandy
loam

loam gravely
sand

surface
organic

loam sandy
loam

loamy
sand

Sand fraction 0 0 0 0.1 0 0.37 0.67 0.48 0.8 0 0.47 0.62 0.77
Silt fraction 0 0 0 0.6 0 0.41 0.28 0.41 0.2 0 0.36 0.29 0.19
Clay fraction 0 0 0 0.3 0 0.22 0.05 0.11 0 0 0.17 0.09 0.04
Organic fraction 1.0 1.0 1.0 0 1.0 0 0 0 0 1.0 0 0 0
ρb [kg m−3] 88.4 93.0 134–

248
1300 90.0 1420 1600 1540 1650 60 1420 1600 1650

θ0 [m3 m−3] 0.92 0.90 0.85–
0.75

0.55 0.92 0.52 0.45 0.52 0.3 0.92 0.52 0.45 0.42

θs [m3 m−3] 0.85 0.88 0.80–
0.70

0.5 0.88 0.45 0.43 0.45 0.3 0.75 0.45 0.43 0.41

θr [m3 m−3] 0.18 0.2 0.2 0.18 0.1 0.1 0.1 0.1 0 0.08 0.1 0.1 0.05
ψ0 [m] −0.01 −0.05 −0.05 −0.356 −0.015 −0.478 −0.218 −0.478 −0.1 −0.01 −0.478 −0.218 −0.09
α [m−1] 50 10 10 2.8 30 2.1 4.6 2.1 10 40 2.1 4.6 10
n [ ] 1.45 1.35 1.35 1.28 1.4 1.3 1.35 1.3 1.25 1.6 1.3 1.35 1.3
λ [ ] 0.4 0.3 0.3 0.28 0.34 0.3 0.35 0.3 0.25 0.45 0.3 0.35 0.3
b [ ] 5.3 5.6 5.6 7.75 4.0 5.4 4.9 5.4 4 3.3 5.4 4.9 4.4
Ks [m s−1] 4.2×10−3 2.9×10−5 6.9×10−6 1.7×10−6 2.5×10−4 6.9×10−6 3.5×10−5 6.9×10−6 3.3×10−4 7×10−3 6.9×10−6 3.5×10−5 1.6×10−4

Tf [◦C] 0.0 −0.05 −0.3 −0.1 0.0 −0.05 −0.05 −0.05 0.0 0.0 −0.05 −0.05 −0.01

of fimp vary; Eqs. (17–19) are widely utilized in LSMs and
HMs (e.g. Flerchinger and Saxton, 1989; Zhao and Gray,
1997; Hannson et al. 2004; Niu and Yang, 2006; Soulis and
Seglenieks, 2008). Zhang et al. (2008) evaluated three types
of unfrozen water formulations against field measurements at
four permafrost sites, of which three had organic cover, and
showed that all three methods could represent the field mea-
surements reasonably well if appropriate parameters were
chosen. Among the three, a water potential-freezing point
depression equation (Eq. 20) (Cary and Mayland, 1972), was
frequently chosen by models with coupled thermal and hy-
drological simulations (Flerchinger and Saxton, 1989; Zhao
and Gray, 1997; Cherkauer and Lettenmaier, 1999; Koren et
al., 1999; Niu and Yang, 2006). The freezing-point (Tf) nor-
mally has a value of 0◦C, but could be slightly below zero
for many clayey soils and some organic soils (Koopmans and
Miller, 1966; Osterkamp, 1987; Quinton et al., 2005).

3 Study sites and methodology

3.1 Site descriptions

All three field sites are located in Canada’s discontinuous
permafrost regions above 60◦ N latitude (Table 4). The
Scotty Creek peat plateau site (referred to as SCP hereafter)
is located in a wetland-dominated region near Fort Simpson,
Northwest Territories. The two other sites: a boreal forest
site (WCF hereafter) and an alpine tundra site (WCA here-

after), are located within the Wolf Creek Research Basin,
Yukon Territory. SCP is a peat plateau that rises 0.9 m
above a surrounding wetland, and is underlain by permafrost
with an active layer∼0.7 m deep. Vegetation is predom-
inantly open canopy black spruce (Picea mariana) mixed
with some northern shrubs and lichen and moss on the for-
est floor. WCF site has closed-canopy white spruce (picea
glauca) mixed with other spruce, pine and poplar species.
The understory consists of a wide range of shrub species with
feather moss and grasses at the surface. WCA is situated on
a windswept ridge with sparse vegetation of mosses, lichens,
grasses and occasional patches of short shrubs. All three
sites had various organic cover depths over mineral hori-
zons (Table 4). The organic soil at SCP has two distinct
layers with the upper 0.1–0.15 m consisting of living plants
and lightly decomposed organic materials overlying peat in a
more advanced state of decomposition. Below the peat is
clay to silt–clay soil with very low permeability (Hayashi
et al., 2007). The organic layers at WCF and WCA are
thin, consisting of live plants and organic materials in light
to moderate decomposing states. Some organic soil param-
eters that are not available from WCA and WCF are es-
timated from measurements taken at a Granger Creek site,
located on a north-facing slope above treeline in a subcatch-
ment of Wolf Creek. The mineral soil at WCF is primar-
ily gleyed cumulic regosol with coarse textures (loamy sand
and sandy loam), while the mineral soil at WCA is pri-
marily orthic eutric brunisols with silty loam texture. The
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climate of Scotty Creek and Wolf Creek is characterized as
sub-arctic dry continental climate, with short, dry summers,
and long cold winters. Based on 1971–2000 averages (Envi-
ronment Canada, 2009), mean annual air temperature at Fort
Simpson airport (50 km north of Scotty Creek) is−3.2◦C,
and the mean January and July temperatures are−25.4◦C
and 17.2◦C, respectively. Average annual precipitation is
369 mm, of which 39% falls as snow. Mean annual air tem-
perature at Whitehorse airport (15 km north of Wolf Creek)
is −0.7◦C, with mean January and July temperatures are
−17.7◦C and 14.1◦C, respectively. Average annual precip-
itation is 267.4 mm, of which 39% falls as snow. Spring
snowmelt accounts for considerable amount of water inputs
at both watersheds (Carey and Woo, 2001; Wright et al.,
2008).

3.2 Field measurements and water balance components

Field measurement periods extending from late March or
early April to end of August were chosen to conduct model
tests at all three sites. Infiltration scenarios include snowmelt
infiltration into frozen or thawing ground, and rainfall infil-
tration into the thawed active layer. Two seasons from each
site, i.e. 2004 and 2005 for SCP, and 1998 and 1999 for
WC F and WCA, were selected based on the availability
of field data. Data from 1998 and 2004 were used for cali-
bration of unknown parameters and initial conditions, while
data from 1999 and 2005 were used for model validation.
Details of field measurements and the methods to quantify
the water balance components can be found in Hayashi et
al. (2007) and Wright et al. (2008) for Scotty Creek site,
and in Pomeroy and Granger (1999) and Janowicz (2000) for
Wolf Creek sites.

3.2.1 Snowmelt (Msn)

Daily Msn was calculated from the difference in successive
daily values of snow water equivalent (SWE). This approach
assumes that sublimation and evaporation from the melting
snow are negligible. SWE at SCP was directly measured at
5 m intervals along a 41 m transect, while SWE at WCF and
WC A were determined by daily snow depth measurements
via ultrasonic depth sensors (Campbell UDG01) and snow
density sampled at variable times at 25 m intervals along a
625 m transect. Average SWE values along the transects
were used in this study.

3.2.2 Soil temperature (T ) and thaw depth (ZT)

Soil temperatures at various depths were continuously
recorded at all three sites. The depths are 0.05 m, 0.1 m,
0.15 m, 0.2 m, 0.25 m, 0.3 m, 0.4 m, 0.5 m, 0.6 m and 0.7 m at
SC P, 0.05 m, 0.15 m, 0.3 m and 0.8 m at WCF, and 0.05 m
and 0.15 m at WCA. ZT was derived from the temperature
measurements after Zhang et al. (2008). Ground surface tem-
perature (Ts) at SCP was directly measured by thermistor

under snow cover and by infrared sensor once snowfree.Ts
at WC F and WCA is estimated from air temperature during
snowfree period and from temperatures measured at 0.1 m
above and 0.05 m below the ground surface during snow-
cover period.

3.2.3 Evapotranspiration (ET)

Wright et al. (2008) calibrated the coefficientC6 in Priestley-
Taylor ET Eq. (21) for three different land-cover types at
SC P site with lysimeter measured ET data. The average
C6 value for the peat plateau ground surface ranged from
0.68–0.91. Here, a value of 0.82 gave the best soil mois-
ture simulations during the calibration period (2004), thus
adopted for model testing period (2005). At Wolf Creek
(WC F and WCP), an ET estimation method (Eq. 22), de-
veloped by Granger and Gray (1989), was implemented by
Granger (1999), and thus adopted in this study.

3.2.4 Soil water content

Daily liquid soil water contents (θl) were measured at all
three sites using site-calibrated TDR or water content reflec-
tometer (CS-615) probes throughout the study period. The
measurement depths are 0.1 m, 0.2 m, 0.3 m, and 0.4 m at
SC P; 0.05 m, 0.15 m, 0.3 m and 0.8 m at WCF; and 0.05 m
and 0.15 m at WCA. At WC F and WCA, changes of to-
tal soil water content (ice + liquid water,θT) were monitored
during snowmelt seasons using twin-probe gamma attenua-
tion techniques as described by Gray and Granger (1986).
The maximum monitoring depths were 1.2 m at WCF and
0.8 m at WCA. Absolute values ofθT were estimated from
the changes with respect to a reference measurement the pre-
vious fall or subsequent summer when the active layer is
thawed. θT was not regularly measured at SCP site, how-
ever, values forθT prior to snow melt were estimated from
two θT profile measurements, one by TDR in the fall of 2002
immediately before the freeze-up and another by two 0.7 m
deep frozen peat cores sampled near the study pit on 6 April
2003 (Hayashi et al., 2007), using the procedure described in
Wright et al. (2008).

3.2.5 Infiltration and runoff

The cumulative infiltration (CINFi) of snowmelt (Msn)

and/or rainfall (R) is estimated from other measured water
balance components as listed in Eqs. (23–24). Equation (23)
is used for SCP and Eq. (24) is used for WCF and WCA.
Equation (23) assumes that the freezing of infiltrated liquid
water during the melt period is negligible, thus the melted
soil water (Msw) could be estimated from changingZT be-
tween two time steps. Runoff (CROF) is estimated by the
difference between water input (R+Msn) and infiltration
(Eq. 25).
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Fig. 1. Measured soil water content–pressure head relationships and best fitting curves with three parameterisation methods for several
organic soils at a peat plateau of Scotty Creek and a north-facing slope of Grange Creek.

3.2.6 Soil properties and hydraulic parameters

One or more soil pits were excavated at each site to deter-
mine soil texture profiles (Pomeroy and Granger, 1999). Ad-
ditional soil cores were taken to determine basic physical
properties such as fractions of sand, silt, clay and organic,
bulk density (ρb) and total porosity (θ0) (Carey et al., 2007;
Quinton et al., 2008). Field measurements of saturated hy-
draulic conductivity, soil water retention curves and unsatu-
rated hydraulic conductivity curves were conducted for sev-
eral organic soils at Scotty Creek and Wolf Creek watersheds
(Carey and Woo, 2001; Hayashi and Quinton, 2004; Quinton
et al., 2005; Carey et al., 2007; Quinton et al., 2008). Pa-
rameters for BC-Para, VG-Para and CH-Para were derived

by curve-fitting to the measured data (Figs. 1 and 2). Table 4
lists soil texture profiles and corresponding parameters at the
sites.

3.3 Infiltration algorithms, parameterisations and eval-
uation methods

Table 5 lists the infiltration algorithms and parameterisations
evaluated in this study. The algorithms/parameterisations are
chosen as: (1) used currently in LSMs and HMs; (2) de-
signed (or modified) to be used in organic covered per-
mafrost soils, and (3) required parameters and inputs can be
achieved/calibrated from the observations and data described
above.
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Table 5. Algorithms/parameterisations tested in this study.

Categories Algorithms/parameterisations Abbreviations Equations/references

Infiltration

Green-Ampt for nonuniform soils GA-SHAW Flerchinger et al. (1988)

algorithms

Mein-Larson for nonuniform soils ML-CLASS Eq. (5); Mein and Larson (1973); Verseghy
(1991)

Instantaneous infiltration IT-TOPO Zhang et al. (2000)
Gray’s empirical infiltration GRAY-IN Eq. (1); Gray et al. (1985)
Zhao’s parametric infiltration ZHAO-IN Eq. (2); Zhao and Gray (1997)

Soil hydraulic
Clapp-Hornberger equations CH-Para Eqs. (11–12); Clapp and Hornberger (1978)

parameterisations
Brooks and Corey equations BC-Para Eqs. (8–10); Brooks and Corey (1964)
van Genuchten equations VG-Para Eqs. (8, 13–15);van Genuchten (1980)

Ice impedance factors
Exponential function EP-Ice Eq. (17); Zhao and Gray (1997)
Squared function SQ-Ice Eq. (18); Soulis and Seglenieks (2008)
Linear functions LN-Ice Eq. (19); Bloomsburg and Wang (1969);

Flerchinger and Saxton (1989)

Fig. 2. Observed average unsaturated hydraulic conductivity of 16
soil samples from Wolf Creek and curves of Eqs. (10), (12) and (14)
with parameters from Fig. 1b.

The Simultaneous Heat and Water (SHAW) Model
(Flerchinger and Saxton, 1989; Flerchinger, 2000) was se-
lected as a common platform to host most of the algo-
rithms and parameterisations listed in Table 5 to allow rea-
sonable comparisons. Infiltration by semi-empirical algo-
rithms (GRAY-IN and ZHAO-IN) is calculated indepen-
dently. SHAW was developed to simulate heat, water and
solute transfers for soils experiencing freezing and thawing
(Flerchinger and Saxton, 1989). The original SHAW model
consists of full balances of energy, water and solutes within
a one-dimensional profile including layers of plant canopy,
snow, residue and soil (Flerchinger, 2000). Its modularized
coding structure makes it effective to add, to disable or to
modify individual processes or parameterisations. In this
study, to focus on infiltration and reduce uncertainties, most

processes that do not directly influence infiltration, such as
canopy process, snow process, surface energy balance and
solute transfer were disabled, and only the soil thermal and
moisture transfers including thawing/freezing and infiltra-
tion/runoff are simulated. This reduces the vertical profile
to only the organic and mineral soil layers. The coupled
soil temperature and moisture (ice, liquid and vapor) trans-
fer equations (Eqs. 26 and 27) were iteratively solved with
a finite difference scheme. The numerical scheme quantifies
the depth of soil thawing/freezing and the soil moisture re-
distribution among soil layers by non-infiltration processes.
The thawing/freezing process is simulated by an apparent
heat capacity parameterization, which has been proved effec-
tive in permafrost regions by Zhang et al. (2008). The upper
boundary conditions were supplied by ground surface tem-
perature (Ts) and evapotranspiration (ET) described above.
Snowmelt and rainfall water were supplied to ground sur-
face, but their infiltration into the soil profile is simulated by a
separate module, i.e. the modified Green-Ampt scheme (GA-
SHAW) for layered soils (Flerchinger et al., 1988). Zero wa-
ter and heat fluxes are assumed at the lower boundary (5 m
soil depth), which is adequate for short-term simulations in
this study (Zhang et al., 2008). The original SHAW code
uses CH-Para for soil hydraulic parameterisation and LN-Ice
as ice impedance factor (Table 5). ML-CLASS is an infiltra-
tion module taken from version 3.4 of Canadian Land Sur-
face Scheme (Verseghy, 2009), which uses Mein and Larson
(1973) as infiltration algorithm, CH-Para as soil hydraulic
parameterisation, SQ-Ice as ice impedance factor (Soulis and
Seglenieks, 2008). IT-TOPO is coded as another optional
infiltration algorithm following the principles described in
Zhang et al. (2000). Parameterisations listed in Table 5,
but not in the original SHAW model, were also coded into
SHAW as alternative modules for comparison.
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The modified SHAW model is fed with daily surface forc-
ing variables includingTs, R, Msn and ET. Much smaller
and dynamic time step (half-hourly or smaller) is used in-
ternally to ensure convergence of the numerical scheme. A
16-layer soil vertical resolution is used at all three sites. The
layer depths are 0.05 m for top two layers, 0.1 m for 0.1–
0.8 m depth and progressively increasing for deeper layers
until the simulated soil bottom at 5 m. Site specific parame-
ters (e.g. coefficients to quantifyTs and ET from known me-
teorological variables) and unknown initial conditions (e.g.
initial soil temperatures and moisture profiles below the ob-
servation depth) were achieved by fitting the simulated di-
agnostic variables to their observed values during calibration
years (1998 and 2004). The principal diagnostic variables
are thawing depth, cumulative infiltration/runoff and soil liq-
uid water content corresponding to the measurement depths.
Since multiple unknowns and multiple diagnostic variables
are involved, an iterative procedure is performed until all the
diagnostic variables achieve their best fitting results. Sim-
ilar procedure has been performed in evaluating the thaw-
ing/freezing simulations in Zhang et al. (2008). The cali-
brated parameters and conditions at the end of calibration
periods are then used to quantify the required inputs and ini-
tiation conditions during the model validations years (1999
and 2005). A common set of inputs and initial conditions are
used for all the model validation runs with different infiltra-
tion algorithms to ensure valid comparison of the algorithms.

4 Results and discussions

4.1 Soil hydraulic parameterisations

The most important soil hydraulic parameterisations for in-
filtration/redistribution are the water retention curve (water
potential vs. water content) and hydraulic conductivity curve
(hydraulic conductivity vs. water potential or content). All
three commonly used methods in Table 5 are able to fit ob-
served soil water retention curves in moderate soil moisture
ranges for several organic soils (Fig. 1). Upon approach-
ing saturation, both CH-Para and BC-Para calculate values
aboveθs, which have to be capped byθs. When liquid wa-
ter declines under frozen conditions with very low water po-
tential, CH-Para gives liquid water content values belowθr.
To counter this, many LSMs and HMs assume a minimum
value for liquid water content (e.g. CLASS, Verseghy, 1991;
SHAW, Flerchinger and Saxton, 1989). The discontinuity of
CH-Para and BC-Para for saturated or extremely dry (frozen)
conditions may result in numerical convergence problems for
the moisture transfer equations (e.g. Eq. 27). Alternative
treatments such as the water balance method, or explicit so-
lutions must be used when soil moisture approachesθs or θr
(Flerchinger, 2000). Theoretically, VG-Para is more suitable
for numerical water transfer models due to its smoothness
over the entire soil moisture range. However, its current ap-

plication in operational LSMs and HMs is limited due to poor
parameter availability of many soil types. Figure 2 shows un-
saturated hydraulic conductivityK values observed by Carey
et al. (2007) and simulated by the three parameterisation
methods using an estimatedKs value of 2.5×10−4 m s−1 and
parameters in Fig. 1b. All three methods gave similarK val-
ues in normal pressure head ranges, except under saturated
conditions when pressure head reaches zero. In this case,K

values calculated by CH-Para and BC-Para have to be capped
by Ks. Although only in a small pressure head range, ob-
servedK values generally match calculated values.

4.2 Parameterisation of unfrozen water content

In this study, unfrozen water content is calculated by a water
potential-freezing point depression equation (Eq. 20), com-
bined with the reversed form of one of the three water reten-
tion equations (Eq. 9, or 11, or 13). Values forψ0 are taken
from Letts et al. (2000) for organic soils and from Clapp and
Hornberger (1978) for mineral soils, based on correspond-
ing texture class. Similar to the performance in water re-
tention simulations (Fig. 1), the discrepancies in simulated
unfrozen water curves by the three water retention equations
were mostly found when liquid water content reaches max-
imum or minimum values due to soil temperature changes
(Fig. 3). Those errors could be easily corrected by bound-
ing the calculated unfrozen water content with observedθr
and θs. Although from two different data sets, parameters
obtained in Figs. 1 and 3 are similar for the same soil. For
example, the parameters in Fig. 1c worked equally well in
Fig. 3a. Since unfrozen water and soil temperature are eas-
ier to measure in permafrost soil than the soil water potential,
these datasets can be an effective alternative to derive soil hy-
draulic parameters from traditional pressure head measure-
ments, as demonstrated by Spaans and Baker (1996) and
Flerchinger et al. (2006). Most of the soil hydraulic parame-
ters in Table 4 are derived by this method.

4.3 Reduction of hydraulic conductivity (K) due to soil
freezing

During soil freezing, two effects act to reduceK. First, the
reduction of liquid water content will lower the water poten-
tialψ (Eq. 9, or 11, or 13), reducingK in a similar manner as
soil drying (Eq. 10, or 12, or 14). Second, an impedance fac-
tor due to the presence of ice is applied toK (e.g. Eq. 17, or
18, or 19). Figure 4 illustrates the changes of ice impedance
factors (Fig. 4a) and hydraulic conductivity with increasing
soil ice fraction (Fig. 4b). Soil parameters used are the same
as in Fig. 3d andKs is set for a typical loam as outlined in
Clapp and Hornberger (1978). The drying effect alone re-
ducesK to similar orders of magnitude as those reported for
frozen soils in Table 3 (Fig. 4b). Although further reduction
by an impedance factor such as Eq. (17) with aC5 value as
high as 10 is noticeable, restrictions imposed by impedance
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Fig. 3. Observed unfrozen water–soil temperature relationships at the three sites and parameterisations with Eq. (20) and three soil water
retention parameterisations. Panel(a), (b), (c) and(e)are organic soils and(d) and(f) are mineral soils.

equations currently employed in LSMs and HMs are rela-
tively small compared to the effect of decreased water poten-
tial (Eq. 10). K-CLASS in Fig. 4b is theK parameterisation
of frozen soil in ML-CLASS; it appliesfimp,2 (Eq. 17) to
Eq. (12) and uses effective pore space (θs−θi) instead ofθs.
Using effective pore space makesθl /(θs−θi) in Eq. (12) al-
ways equal to 1.0 when total soil water content isθs, thus the
only reduction toKs is fimp,2. This treatment underestimates
the magnitude ofK reduction shown in Table 3.

4.4 Sensitivity tests

To reduce the redundancy in evaluation procedure caused by
the numerous possible combinations of algorithms and pa-
rameterisations, sensitivity tests of algorithms, parameterisa-

tions and some key input variables were performed for infil-
tration simulation. Daily infiltration outputs were cumulated
over three ground thawing stages: i.e. frozen, thawing and
thawed (Table 6). Frozen and thawing stages are separated
by the date at which ground thawing starts, while thawing
and thawed stages are separated by the date at which ground
thaw reached a prescribed depth (0.4 m at SCP and WCF,
and 0.15 for WCA). A baseline run with specified configu-
rations was first conducted with data from each of the three
sites (Table 6). Test runs with only one changed attribute
(algorithm/parameterisation/input) were followed and results
summarized in Table 6. For comparison and analysis, some
observed water inputs and infiltration, and snowmelt infil-
tration calculated by the semi-empirical methods were also
included in Table 6.
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Fig. 4. Parameterisations of ice impedance factor(a) and their reductions to hydraulic conductivity when applied to Eq. (10). The soil
hydraulic parameters used are as in Fig. 3d.

Table 6. Observed and simulated infiltration (mm) by different algorithms, parameterisations and boundary inputs for three ground thawing
stages at the three permafrost sites.

Site Scotty Creek Peat Plateau Site Wolf Creek Forest Site Wolf Creek Alpine Site

Stagea Frozen Thawing Thawed Frozen Thawing Thawed Frozen Thawing Thawed
Snowmelt + Rain 203.1 125.0 170.0 4.5 59.8 83.5 78.5 77.3 34.9
Observation 24.0 80.0 – – 33.8d – 19.1 – –
GRAY-INb 16.8 – 38.8 – 49.6 –
ZHAO-IN 44.8 – – 10.1 41.0 – 29.7 7.7 –
Baseline Runc 14.1 84.0 170.0 4.5 59.8 83.5 30.5 68.7 34.9
ML-CLASS 23.0 78.0 170.0 4.5 59.8 83.5 67.9 77.3 34.9
IT-TOPO 11.2 69.6 170.0 0 18.2 83.5 0 4.7 34.9
BC-Para 14.9 89.3 170.0 4.5 59.8 83.5 30.5 67.5 34.9
VG-Para 14.6 88.2 170.0 4.5 59.8 83.5 20.8 68.7 34.9
SQ-Ice 12.8 85.0 170.0 4.5 59.8 83.5 30.4 67.5 34.9
EP-Ice (C5=2) 12.9 84.9 170.0 4.5 59.8 83.5 30.4 68.4 34.9
EP-Ice (C5=10) 3.3 94.8 170.0 4.5 59.8 83.5 30.4 60.2 34.9
fimp ≡ 1 17.5 80.6 170.0 4.5 59.8 83.5 30.5 67.5 34.9
Ts+1◦C 24.4 73.1 170.0 4.5 59.8 83.5 51.5 74.4 34.9
Ts–1◦C 9.2 89.7 170.0 2.7 51.0 83.5 1.5 67.5 34.9
ET increase 20% 14.1 84.0 170.0 4.5 59.8 83.5 30.5 68.7 34.9
ET decrease 20% 14.1 84.0 170.0 4.5 59.8 83.5 30.5 68.7 34.9

a Frozen, thawing and thawed stages are 26 March–26 April, 27 April–6 June and 7 June–31 August 2005 for SCP, 1 April–15 April, 16
April–24 May and 25 May–31 August 1999 for WCF, and 1 April–12 May, 13 May–4 June, and 5 June–31 August 1999 for WCA.
b This method gives the total snowmelt infiltration, which include all infiltration during ground frozen and some during thawing.
c Baseline run is defined as using SHAW infiltration algorithm, LN-Para for soil water retention and hydraulic conductivity, SQ-Ice for ice
impedance factor with standard inputs from observation/estimation.
d This value only accounted for infiltration from 16 April to 27 April 1999.

The sensitivity of the simulated infiltration to the changes
of algorithms, parameterisations or inputs only occurred dur-
ing soil frozen and thawing stages at all sites (Table 6). Once
the ground thawed to a certain depth, all water infiltrated

into the soil regardless the configured algorithms, parame-
terisations or inputs. The three soil hydraulic parameterisa-
tions (CH-Para, BC-Para and VG-Para) had little influence
on the simulations during all three stages. In this study,
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Fig. 5. Surface forcing variables(a), observed and simulated ground thaw depths(b), cumulative infiltration(c) and runoff(d) at three
thawing stages, and liquid soil water content at the monitoring depths (e, f, g andh) at Scotty Creek peat plateau site.

parameters (Table 4) were deliberately chosen to represent
the hydraulic curves (Figs. 1–3). For CH-Para and BC-Para,
the soil water content values were capped byθs andθr during
saturated or extremely dry or frozen conditions. The vari-
ous ice impedance factors gave marginal differences for the
simulated frozen soil infiltration in most of the tested cases,
even disabling this factor (fimp ≡ 1) did not show obvious in-
crease in frozen soil infiltration at all three sites. This further
confirmed the result that once Eq. (20) was employed, ice
impedance factors such as Eqs. (16–18) may not be necessary
as an extra restriction onK, as also indicated by Fig. 4. Infil-
tration simulation during ground frozen and thawing stages is
very sensitive to ground surface temperature, mainly through
its influence on thawing development. Therefore it is cru-

cial for LSMs and HMs to obtain or to simulate accurate
Ts in order to better simulate infiltration/runoff during soil
frozen or thawing stages. Changes of ET did not influence
the infiltration amount of any stage at any site, but did have
a large influence on soil water content (results not shown).
The insensitivity of ET on infiltration is due to the fact that
the surface organic soil has a large conductivity and water
holding capacity once thawed, which normally exceeds the
water supplying rate from the surface, and thus does not re-
spond to the soil water content changes caused by ET.
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Fig. 6. Surface forcing variables(a), observed and simulated ground thaw depths(b), cumulative infiltration(c) and runoff(d) at three
thawing stages, and liquid soil water content at the monitoring depths (e, f, g andh) at Wolf Creek forest site.

4.5 Comparison of infiltration algorithms

Based on the sensitivity tests, one fixed set of parameteri-
sations (i.e. CH-Para for soil water potential and hydraulic
conductivity, Eq. (20) and Eq. (11) for unfrozen water con-
tent and Eq. (18) for ice impedance), was adopted during the
comparison of the three analytical algorithms (GA-SHAW,
ML-CLASS and IT-TOPO). Except for its infiltration algo-
rithm, another difference between ML-CLASS and the other
two algorithms was ML-CLASS uses effective pore space
(θs− θi) instead ofθs for frozen soil while others retainθs
in all conditions. The simulation statistics in the validation
years compare well to those achieved during the calibration
years, indicating the robustness of the parameters (Table 7).

Detailed comparison of the three analytical algorithms at
the three test sites during validation years are presented in
Figs. 5, 6 and 7. Frozen soil infiltration was observed at
both SCP and WCA, but not at WCF, where very lit-
tle snowmelt water was supplied to the frozen ground (Ta-
ble 6, Fig. 6a). IT-TOPO does not allow frozen soil infil-
tration, while both GA-SHAW and ML-CLASS algorithms
simulated infiltration into frozen ground. The frozen soil in-
filtration simulated by ML-CLASS was approximately dou-
ble the amount simulated by GA-SHAW at both SCP and
WC A sites, due mainly to the effective pore space applied in
ML-CLASS, which increased the hydraulic conductivity in
Eq. (12) (Fig. 4). Although ML-CLASS did provide a closer
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Fig. 7. Surface forcing variables(a), observed and simulated cumulative infiltration(b) and runoff(c) at three thawing stages, ground thaw
depths(d), and liquid soil water content at the monitoring depths (eandf) at Wolf Creek alpine site.

value to the observation-based estimation of the total frozen
soil infiltration at SCP (Table 6), GA-SHAW gave better
cumulative patterns at all three sites (Figs. 5c, 6c and 7b).
Liquid water content during frozen stages was mainly con-
trolled by soil temperature, and no differences were found
among the runs with different algorithms despite the large
differences in simulated infiltration.

No notable difference was found for simulated ground
thawing among the three infiltration algorithms. The ob-
served ground thawing patterns were well simulated at SCP
and WCA, but underestimated at WCF during the early
stages. At WCF, the observed thawing started only 4 days
after snowmelt began, and thawed to 0.15 m depth in 5 days,
while 0.1 m of snow still remained on the ground surface. As
the ground surface temperature directly beneath the snow-
cover can not be above zero, the model is incapable of pre-
dicting this thawing. A potential cause of this thaw is the
advection of heat and water from snow-free areas nearby
which cannot be accounted for in a 1-D model. The dif-
ferences between the simulated infiltration by GA-SHAW
and ML CLASS are small during thawing stages at all three

sites and are well comparable to observed values (Table 6
and Figs. 5c, 6c and 7b). No observation was available for
WC A during thawing, but most of the input water infiltrated
into ground as simulated by GA-SHAW and ML-CLASS.
IT-TOPO gave the smallest infiltration volumes during thaw-
ing stages as it does not allow water to infiltrate into frozen
ground. The liquid soil water content during the thawing
stage is controlled both by infiltration water and the liquid
water released as ice melts. The simulations by GA-SHAW
and ML-CLASS were similar at all three sites during thawing
stages, with better results at SCP and WCA than at WCF.
The weak soil water simulation at WCF was caused by the
poor estimation of thawing development. Simulated liquid
soil water content by IT-TOPO was lower than the other two
algorithms at WCF and WCA, but similar at SCP as sim-
ulated infiltration at this site was close to observed values.

The rapid and complete infiltration of surface water during
thawed stages simulated by all three algorithms was achieved
by the large hydraulic conductivity and water holding ca-
pacity of the surface organic soil. While the same infiltra-
tion amounts were simulated during thawed stages (Table 6),
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Table 7. The root mean squared differences of daily thaw depth and liquid water content, absolute difference of cumulative infiltration
between observation and simulation by three algorithms at three testing sites during both calibration and validation years.

Calibration years Validation years
Thaw depth Liquid water Infiltration Thaw depth Liquid water Infiltration

(m) (m3 m−3) (mm) (m) (m3 m−3) (mm)

Scotty Creek Peat Plateau Site
GA-SHAW 0.04 0.05 −8.2 0.05 0.06 −9.6
ML-CLASS 0.05 0.06 −7.1 0.05 0.06 −6.2
IT-TOPO 0.06 0.09 −17.0 0.05 0.08 −26.9
Wolf Creek Forest Site
GA-SHAW 0.15 0.08 3.2 0.19 0.09 5.5
ML-CLASS 0.16 0.09 3.2 0.19 0.09 5.5
IT-TOPO 0.16 0.10 −23.0 0.17 0.08 −33.5
Wolf Creek Alpine Site
GA-SHAW 0.02 0.05 10.6 0.02 0.04 11.4
ML-CLASS 0.02 0.05 25.3 0.03 0.05 48.8
IT-TOPO 0.02 0.07 −13.1 0.03 0.08 −19.1

the simulated soil water content by the three algorithms dif-
fered (Figs. 5–7), revealing their different water redistribu-
tion mechanisms. IT-TOPO fills the layers closest to the per-
mafrost table first, commonly resulting in an underestimation
of water content in the upper layers (Figs. 5e, 5f, 5g, 7e). The
soil water content simulated by GA-SHAW and ML-CLASS
differed only marginally at SCP and WCF, but ML-CLASS
underestimated water content during late summer at WCA.
In general, during the thawed stage, GA-SHAW performed
best compared with the observed liquid water at all sites,
with simulations at SCP and WCA better than at WCF
(Table 7). The poor simulation at WCF may be attributed to
the delayed soil thawing that altered soil water status in the
early stages of thaw (Fig. 6f, g and h).

In Table 6, GRAY-IN gave the total amount of snowmelt
water infiltration, which included all the infiltration during
frozen stage and some of the infiltration during thawing. The
value calculated by GRAY-IN for WCF is close to the obser-
vation, but at SCP infiltration is poorly underestimated. Al-
though no comparable observation was available at WCA,
the snowmelt infiltration calculated by GRAY-IN was much
smaller than the total infiltration during frozen and thawing
stages calculated by GA-SHAW and ML-CLASS. ZHAO-IN
overestimated the infiltration during frozen stage at SCP, but
gave comparable results at WCF and WCA with both ob-
servation and the results from GA-SHAW and MLCLASS.
These results suggest that the parameters of empirical and
parametric algorithms are highly site dependent and must be
calibrated accordingly.

5 Conclusions

Based on various field measurements at three discontinuous
permafrost sites, this study evaluated five infiltration algo-
rithms, three soil hydraulic property parameterisations, vari-
ous ice impedance schemes on frozen soil hydraulic conduc-
tivity, and their influences and sensitivity on water infiltration
into organic covered permafrost soils. The following con-
clusions are presented to provide guidelines to improve the
infiltration schemes and parameterisations of current LSMs
and HMs, for their applications in permafrost environments.
Some limitations of this study are also addressed.

1. The single most important factor controlling infiltration
into permafrost soils is ground thaw status. The infiltra-
tion during the soil frozen stage is largely controlled by
soil ice content, while thaw depth controls the infiltra-
tion during the thawing stage. Once the ground thawed
to certain depth (i.e. 15–30 cm in this study), infiltration
became “unlimited” as described in Gray et al. (1985).

2. The performance of the semi-empirical infiltration al-
gorithms (GRAY-IN and ZHAO-IN) varied among the
three sites, indicating that they require site-specific pa-
rameter calibration, limiting their applications in HMs
and LSMs.

3. The conceptual instantaneous infiltration algorithm (IT-
TOPO) restricts infiltration during the frozen stage and
underestimates infiltration during thawing stage. Even
though the simulated infiltration during the thawed
stage is the same as other algorithms, its water re-
distribution scheme typically underestimates soil water
content in the upper thawed layers. Consequently, IT-
TOPO is not recommended for applications in organic-
covered permafrost soils.
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4. The two analytical algorithms (GA-SHAW and ML-
CLASS) gave similar infiltration simulations during
most stages and site conditions. Some differences ex-
hibited during the ground frozen and thawing stages
were caused by their different parameterisation of
frozen soil hydraulic conductivity (K), rather than the
infiltration algorithms used: i.e. modified Green-Ampt
and Mein-Larson for layered soil. This study recom-
mends both algorithms for infiltration simulation at or-
ganic cover permafrost sites, but the parameterisation of
frozen groundK in current CLASS frozen soil module
(Verseghy, 2009), particularly the introduction of an ef-
fective pore space (Soulis and Seglenieks, 2008), may
overestimate the frozen soilK.

5. With properly chosen parameters, the three soil hy-
draulic property parameterisations, i.e. Clapp and Horn-
berger (CH-Para), Brooks and Corey (BC-Para), and
van Genuchten (VG-Para), achieve similar soil water
retention and hydraulic conductivity curves for normal
soil moisture ranges. However, the calculated soil liq-
uid water content and hydraulic conductivity by CH-
Para and BC-Para should be bounded by maximum and
minimum values during saturation or frozen conditions.
This treatment could cause convergence problems for
infiltration schemes coupled with numerical moisture
redistribution schemes. While VG-Para gives smooth
parameterisation curves for all soil moisture range, its
application is restricted by the general availability of pa-
rameters. Paired measurement data of unfrozen water
content (θl) and subfreezing soil temperature (Ts) could
be used to derive soil hydraulic parameters by fitting
θl −Ts relationships derived from Eq. (20) and the soil
water retention equations.

6. Only by applying Eq. (20) to unsaturated hydraulic con-
ductivity (K) equations (Eq. 10, 12 or 14) could realis-
tic simulation of the reduction ofK due to soil frozen
be achieved in the range of observations. Further reduc-
tion by various ice impedance factors as employed in
many land surface and hydrological models may not be
necessary in organic-covered permafrost soils.

7. Sensitivity tests indicate that simulated infiltration is
sensitive to algorithms, parameterisations and input
changes only during the frozen and fast thawing stages.
The infiltration at these stages is sensitive to ground sur-
face temperature but not to evapotranspiration.

8. All three sites in this study are located in relative flat
areas, reducing the potential for lateral flow. However,
the abnormal ground thaw under snowcover at WCF
site (Fig. 6b) was most likely caused by the advection
of heat and/or water from snow-free patches. Slopes
are common feature in permafrost terrain and cannot be
omitted in operational LSMs or HMs for infiltration and
runoff simulations.

9. The preferential flow suggested by many permafrost in-
filtration studies (e.g. Mackay, 1983) can be represented
by high hydraulic conductivity values parameterised for
surface organic layers. No additional algorithm is nec-
essary to account for preferential flow at these sites.

Appendix A

Notation

b empirical coefficient in Clapp-
Hornberger equations, [ ]

Ci,i= 1,7 empirical coefficients, [ ]
CINFi,i= 1,2 cumulative infiltration estimated from

field observation, [mm]
CROF cumulative runoff estimated from

field observation, [mm]
Cs volumetric heat capacity of soil,

[J m−3 C−1]
Cl specific heat capacity of soil, [J kg−1

C−1]
Ea relative drying power of air in

Granger equation, [mm d−1].
ET evapotranspiration, [mm d−1]
fimp,i i= 1,3 different expressions of impedance

factor, [ ]
g gravitational acceleration, [9.8 m s−2]
G relative ET coefficient in Granger

equation, [ ]
I ′ incremented infiltration depth, [m]
INFi,i= 1,6 different expressions of rate of infil-

tration, [mm s−1]
Ks saturated hydraulic conductivity for

unfrozen soil, [m s−1]◦

K unsaturated hydraulic conductivity,
[m s−1]

KT soil thermal conductivity, [W m−1

C−1]◦

Kbtm saturated hydraulic conductivity at
bottom layer, [m s−1]

Ktop saturated hydraulic conductivity at
top layer, [m s−1]

Kw hydraulic conductivity at wetting
front, [m s−1]◦

m,n empirical coefficients in van
Genuchten equations, [ ]

Lf latent heat of fusion, 3.34×108

[J m−3]
Lv latent heat of vaporization, 2.51×109

[J m−3]
Msn amount of melt snow, [mm]
Msw amount of melt soil ice, [mm]
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Qn net radiation, [J m−2 d−1]
Qg soil heat flux, [J m−2 d−1]
ql,qv soil liquid and vapor fluxes respec-

tively, [m s−1]
R rainfall, [mm]
S0 surface saturation during infiltration,

higher thanSI , [m3 m−3]
Se effective saturation, [m3 m−3]
SI premelt pore saturation in top 0–

30 cm soil layer, [m3 m−3]
SWE premelt total snow water equivalent,

[mm]
t infiltration time, [second]
tp ponding start time, [second]
T soil temperature, [◦C]
Ta air temperature, [◦C]
TI premelt average soil temperature in

top 0–30 cm soil layer, [◦C]
Tf freezing point temperature, [◦C]
Ts ground surface temperature, [◦C]
U Source/sink term for water flux,

[m3 m−3 s−1]
Z soil depth, [m]
Zf infiltration depth, [m]
Zp ponding depth, [m]
ZT ground thaw depth, [m]
Ztrn transition depth of hydraulic conduc-

tivity, [m]
α constant in van Genuchten equation

(13 and 14), [m−1]
β a parameter approximated from soil

sorptivity, initial moisture and rainfall
intensity, [m2 s−1]

γ psychrometric constant [Pa◦C−1]
δ slope of the saturation vapour

pressure-temperature curve,
[Pa◦C−1]

θ0 soil porosity, [m3 m−3]
θi volumetric fraction of soil ice con-

tent, [m3 m−3]
θini Initial soil moisture content,

[m3 m−3]
θl unfrozen (liquid) water content,

[m3 m−3]
θr residue soil water content, [m3 m−3]
θs saturated soil water (ice+liquid) con-

tent, [m3 m−3]
θT total soil water (ice+liquid) content,

[m3 m−3]
λ empirical coefficient in Brooks-Corey

equations, [ ]
ρi , ρl , ρv density of ice, liquid water and vapor

respectively, [kg m−3]
ψ soil water potential, [m]

ψ0 soil water potential at saturation or air
entry potential, [m]

ψw soil water potential at wetting front, [m]
1SWL changes of soil liquid water content in

the soil column, [mm]
1SWT changes of soil total water content in the

soil column, [mm]
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