495 research outputs found

    Analysis of a turbine rotor containing a transverse crack at Oak Creek Unit 17

    Get PDF
    Transient increases in one, two and three per revolution vibration characteristics of a low pressure steam turbine were observed during steam temperature reduction operations. Vibration and fracture mechanics analyses suggested the presence of a transverse shaft crack which was eventually identified by ultrasonic inspection and confirmed by destructive sectioning. Signature analyses of vibration data recorded over a two-year period prior to crack identification are correlated with fatigue crack growth, which occurred intermittently during transient temperature decreases. The apparent increased response of the rotor to vibration is due to asymmetric stiffness changes introduced by the growing transverse crack. The vibration response is predicted to increase with increasing crack depths in excess of 10% of the shaft diameter. Fracture mechanics analyses predict that fatigue crack growth occurred during periods of steam temperature decrease, when high surface tensile stresses are present. These same transient thermal stresses are shown to have retarded and prevented subsequent fatigue crack growth during steady operation

    Second Order Correlation Function of a Phase Fluctuating Bose-Einstein Condensate

    Get PDF
    The coherence properties of phase fluctuating Bose-Einstein condensates are studied both theoretically and experimentally. We derive a general expression for the N-particle correlation function of a condensed Bose gas in a highly elongated trapping potential. The second order correlation function is analyzed in detail and an interferometric method to directly measure it is discussed and experimentally implemented. Using a Bragg diffraction interferometer, we measure intensity correlations in the interference pattern generated by two spatially displaced copies of a parent condensate. Our experiment demonstrates how to characterize the second order correlation function of a highly elongated condensate and to measure its phase coherence length.Comment: 22 pages, 5 figure

    Characterization and control of phase fluctuations in elongated Bose-Einstein condensates

    Full text link
    Quasi one dimensional Bose-Einstein condensates (BECs) in elongated traps exhibit significant phase fluctuations even at very low temperatures. We present recent experimental results on the dynamic transformation of phase fluctuations into density modulations during time-of-flight and show the excellent quantitative agreement with the theoretical prediction. In addition we confirm that under our experimental conditions, in the magnetic trap density modulations are strongly suppressed even when the phase fluctuates. The paper also discusses our theoretical results on control of the condensate phase by employing a time-dependent perturbation. Our results set important limitations on future applications of BEC in precision atom interferometry and atom optics, but at the same time suggest pathways to overcome these limitations.Comment: 9 pages, 7 figure

    Introduction of a pyramid guiding process for general musculoskeletal physical rehabilitation

    Get PDF
    Successful instruction of a complicated subject as Physical Rehabilitation demands organization. To understand principles and processes of such a field demands a hierarchy of steps to achieve the intended outcome. This paper is intended to be an introduction to a proposed pyramid scheme of general physical rehabilitation principles. The purpose of the pyramid scheme is to allow for a greater understanding for the student and patient. As the respected Food Guide Pyramid accomplishes, the student will further appreciate and apply supported physical rehabilitation principles and the patient will understand that there is a progressive method to their functional healing process

    Perturbation theory for anisotropic dielectric interfaces, and application to sub-pixel smoothing of discretized numerical methods

    Full text link
    We derive a correct first-order perturbation theory in electromagnetism for cases where an interface between two anisotropic dielectric materials is slightly shifted. Most previous perturbative methods give incorrect results for this case, even to lowest order, because of the complicated discontinuous boundary conditions on the electric field at such an interface. Our final expression is simply a surface integral, over the material interface, of the continuous field components from the unperturbed structure. The derivation is based on a "localized" coordinate-transformation technique, which avoids both the problem of field discontinuities and the challenge of constructing an explicit coordinate transformation by taking a limit in which a coordinate perturbation is infinitesimally localized around the boundary. Not only is our result potentially useful in evaluating boundary perturbations, e.g. from fabrication imperfections, in highly anisotropic media such as many metamaterials, but it also has a direct application in numerical electromagnetism. In particular, we show how it leads to a sub-pixel smoothing scheme to ameliorate staircasing effects in discretized simulations of anisotropic media, in such a way as to greatly reduce the numerical errors compared to other proposed smoothing schemes.Comment: 10 page

    1015-72 Elevated Plasma Homocysteine: An Important Independent Risk Factor for Coronary Artery Disease in the Elderly

    Get PDF
    BackgroundHigh plasma homocysteine (HCY) concentration is an established risk factor for premature vascular disease which can be reduced using vitamin therapy. The role of increased homocysteine as a coronary risk factor in the elderly, however, remains uncertain.MethodsWe studied 228 patients with angiographically documented coronary disease (≥ 70% stenosis in at least one major epicardial vessel). These included 136 patients less than, and 92 greater than 65 years old. Patients were compared to 223 healthy controls 199 (<65) and 24 (> 65). The presence of traditional risk factors including hypertension, smoking, hypercholesterolemia and diabetes mellitus were noted. Total fasting plasma homocysteine was measured in all subjects. A gender-adjusted threshold for a high homocysteine level was defined as the 80th percentile for healthy controls (corresponding to a level of 11.7 μmol/L in women and 13.6 μmo1/L in men).ResultsAge<65Age>65PatientsControlsPatientsControlsHomocysteine12.2±4.0*11.0±3.414.2±4.6*11.9±3.6High HCY(%)33*2050†25Odds Ratios2.0*NA2.9*NAConfidence Interval1.2–3.2NA1.0–8.3NA*p<am vs controls†p<0.03ConclusionsHomocysteine concentrations are elevated in patients with coronary artery disease older than 65 years in age. A high value confers an independent three-fold risk for coronary disease in this patient group. Accordingly, intervention studies designed to reduce plasma homocysteine levels should not exclude the elderly

    Bis(μ-2-tert-butyl­phenyl­imido-1:2κ2 N:N)chlorido-2κCl-(diethyl ether-1κO)(2η5-penta­methyl­cyclo­penta­dien­yl)lithiumtantalum(V)

    Get PDF
    In the title compound, [LiTa(C10H15)(C10H13N)2Cl(C4H10O)], the TaV atom is coordinated by a η5-penta­methyl­cyclo­penta­dienyl (Cp*) ligand, a chloride ion and two N-bonded 2-tert-butyl­phenyl­imide dianions. With respect to the two N atoms, the chloride ion and the centroid of the Cp* ring, the tantalum coordination geometry is approximately tetra­hedral. The lithium cation is bonded to both the 2-tert-butyl­phenyl­imide dianions and also a diethyl ether mol­ecule, in an approximate trigonal planar arrangement. The Ta⋯Li separation is 2.681 (15) Å. In the crystal, a weak C—H⋯Cl inter­action links the mol­ecules. When compared to the 2,6-diisopropyl­phenyl­imide analogue (‘the Wigley derivative’) of the title compound, the two structures are conformationally matched with an overall r.m.s. difference of 0.461Å

    BLUF Domain Function Does Not Require a Metastable Radical Intermediate State

    Get PDF
    BLUF (blue light using flavin) domain proteins are an important family of blue light-sensing proteins which control a wide variety of functions in cells. The primary light-activated step in the BLUF domain is not yet established. A number of experimental and theoretical studies points to a role for photoinduced electron transfer (PET) between a highly conserved tyrosine and the flavin chromophore to form a radical intermediate state. Here we investigate the role of PET in three different BLUF proteins, using ultrafast broadband transient infrared spectroscopy. We characterize and identify infrared active marker modes for excited and ground state species and use them to record photochemical dynamics in the proteins. We also generate mutants which unambiguously show PET and, through isotope labeling of the protein and the chromophore, are able to assign modes characteristic of both flavin and protein radical states. We find that these radical intermediates are not observed in two of the three BLUF domains studied, casting doubt on the importance of the formation of a population of radical intermediates in the BLUF photocycle. Further, unnatural amino acid mutagenesis is used to replace the conserved tyrosine with fluorotyrosines, thus modifying the driving force for the proposed electron transfer reaction; the rate changes observed are also not consistent with a PET mechanism. Thus, while intermediates of PET reactions can be observed in BLUF proteins they are not correlated with photoactivity, suggesting that radical intermediates are not central to their operation. Alternative nonradical pathways including a keto–enol tautomerization induced by electronic excitation of the flavin ring are considered
    corecore