36 research outputs found

    The Price of Anarchy in Transportation Networks: Efficiency and Optimality Control

    Full text link
    Uncoordinated individuals in human society pursuing their personally optimal strategies do not always achieve the social optimum, the most beneficial state to the society as a whole. Instead, strategies form Nash equilibria which are often socially suboptimal. Society, therefore, has to pay a price of anarchy for the lack of coordination among its members. Here we assess this price of anarchy by analyzing the travel times in road networks of several major cities. Our simulation shows that uncoordinated drivers possibly waste a considerable amount of their travel time. Counterintuitively,simply blocking certain streets can partially improve the traffic conditions. We analyze various complex networks and discuss the possibility of similar paradoxes in physics.Comment: major revisions with multicommodity; Phys. Rev. Lett., accepte

    A new method for analyzing ground-state landscapes: ballistic search

    Full text link
    A ``ballistic-search'' algorithm is presented which allows the identification of clusters (or funnels) of ground states in Ising spin glasses even for moderate system sizes. The clusters are defined to be sets of states, which are connected in state-space by chains of zero-energy flips of spins. The technique can also be used to estimate the sizes of such clusters. The performance of the method is tested with respect to different system sizes and choices of parameters. As an application the ground-state funnel structure of two-dimensional +or- J spin glasses of systems up to size L=20 is analyzed by calculating a huge number of ground states per realization. A T=0 entropy per spin of s_0=0.086(4)k_B is obtained.Comment: 10 pages, 11 figures, 35 references, revte

    Calculation of ground states of four-dimensional +or- J Ising spin glasses

    Full text link
    Ground states of four-dimensional (d=4) EA Ising spin glasses are calculated for sizes up to 7x7x7x7 using a combination of a genetic algorithm and cluster-exact approximation. The ground-state energy of the infinite system is extrapolated as e_0=-2.095(1). The ground-state stiffness (or domain wall) energy D is calculated. A D~L^{\Theta} behavior with \Theta=0.65(4) is found which confirms that the d=4 model has an equilibrium spin-glass-paramagnet transition for non-zero T_c.Comment: 5 pages, 3 figures, 31 references, revtex; update of reference

    Specific-Heat Exponent of Random-Field Systems via Ground-State Calculations

    Full text link
    Exact ground states of three-dimensional random field Ising magnets (RFIM) with Gaussian distribution of the disorder are calculated using graph-theoretical algorithms. Systems for different strengths h of the random fields and sizes up to N=96^3 are considered. By numerically differentiating the bond-energy with respect to h a specific-heat like quantity is obtained, which does not appear to diverge at the critical point but rather exhibits a cusp. We also consider the effect of a small uniform magnetic field, which allows us to calculate the T=0 susceptibility. From a finite-size scaling analysis, we obtain the critical exponents \nu=1.32(7), \alpha=-0.63(7), \eta=0.50(3) and find that the critical strength of the random field is h_c=2.28(1). We discuss the significance of the result that \alpha appears to be strongly negative.Comment: 9 pages, 9 figures, 1 table, revtex revised version, slightly extende

    Ground-state behavior of the 3d +/-J random-bond Ising model

    Full text link
    Large numbers of ground states of the three-dimensional ±J\pm J random-bond Ising model are calculated for sizes up to 14314^3 using a combination of a genetic algorithm and Cluster-Exact Approximation. Several quantities are calculated as function of the concentration pp of the antiferromagnetic bonds. The critical concentration where the ferromagnetic order disappears is determined using the Binder cumulant of the magnetization. A value of pc=0.222±0.005p_c=0.222\pm 0.005 is obtained. From the finite-size behavior of the Binder cumulant and the magnetization critical exponents ν=1.1±0.3\nu=1.1 \pm 0.3 and β=0.2±0.1\beta=0.2 \pm 0.1 are calculated.Comment: 8 pages, 11 figures, revte

    Reachability of Five Gossip Protocols

    Get PDF
    Gossip protocols use point-to-point communication to spread information within a network until every agent knows everything. Each agent starts with her own piece of information (‘secret’) and in each call two agents will exchange all secrets they currently know. Depending on the protocol, this leads to different distributions of secrets among the agents during its execution. We investigate which distributions of secrets are reachable when using several distributed epistemic gossip protocols from the literature. Surprisingly, a protocol may reach the distribution where all agents know all secrets, but not all other distributions. The five protocols we consider are called 햠햭햸, 햫햭햲, 햢햮, 햳햮햪, and 햲햯햨. We find that 햳햮햪 and 햠햭햸 reach the same distributions but all other protocols reach different sets of distributions, with some inclusions. Additionally, we show that all distributions are subreachable with all five protocols: any distribution can be reached, if there are enough additional agents

    An Average-Case Analysis for Rate-Monotonic Multiprocessor Real-time Scheduling

    Get PDF
    We introduce the "First Fit Matching Periods" algorithm for static-priority multiprocessor scheduling of periodic tasks with implicit deadlines and show that it yields asymptotically optimal processor assignments if utilization values are chosen uniformly at random. More precisely we prove that the expected waste is upper bounded by O(n^(3/4) * (log n)^(3/8)). Here the waste denotes the ratio of idle times, cumulated over all processors and n gives the number of tasks. The algorithm can be implemented to run in time O(n log n) and even in the worst case, an asymptotic approximation ratio of 2 is guaranteed. Experiments yield an expected waste proportional to n^0.70, indicating that the above upper bound on the expected waste is almost tight

    Imaging of hydrothermal altered zones in Wadi Al-Bana, in southern Yemen, using remote sensing techniques and very low frequency–electromagnetic data

    Get PDF
    © 2019, Saudi Society for Geosciences. Economic mineralization and hydrothermally altered zones are areas of great economic interests. This study focusses on hydrothermal altered zones of high mineralization potentials in Wadi Al-Bana, in southern Yemen. An azimuthal very low frequency–electromagnetic (AVLF-EM) data acquisition was conducted in search for mineralization in the study area. The study integrated observations from geophysical field data with others extracted from object-oriented principal component analysis (PCA) to better map and understand mineralization in the investigated area. This technique was applied to two data sets, ASTER and Landsat 8 Operational Land Imager (OLI) imagery. The results of PCA revealed high accuracy in detecting alteration minerals and for mapping zones of high concentration of these minerals. The PCA-based distribution of selected alteration zones correlated spatially with high conductivity anomalies in the subsurface that were detected by VLF measurements. Finally, a GIS model was built and successfully utilized to categorize the resulted altered zones, into three levels. [Figure not available: see fulltext.]

    Lagerung von Abfällen

    No full text
    corecore