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Abstract. Many distributed cloud-based services use multiple loosely
consistent replicas of user information to avoid the high overhead of more
tightly coupled synchronization. Periodically, the information must be
synchronized, or reconciled. One can place this problem in the theoretical
framework of set reconciliation: two parties A1 and A2 each hold a set of
keys, named S1 and S2 respectively, and the goal is for both parties to
obtain S1 ∪S2. Typically, set reconciliation is interesting algorithmically
when sets are large but the set difference |S1 − S2|+ |S2 − S1| is small.
In this setting the focus is on accomplishing reconciliation efficiently in
terms of communication; ideally, the communication should depend on
the size of the set difference, and not on the size of the sets.
In this paper, we extend recent approaches using Invertible Bloom Lookup
Tables (IBLTs) for set reconciliation to the multi-party setting. There are
three or more parties A1, A2, . . . , An holding sets of keys S1, S2, . . . , Sn

respectively, and the goal is for all parties to obtain ∪iSi. Whiel this
could be done by pairwise reconciliations, we seek more effective meth-
ods. Our general approach can function even if the number of parties
is not exactly known in advance, and with some additional cost can be
used to determine which other parties hold missing keys.
Our methodology uses network coding techniques in conjunction with
IBLTs, allowing efficiency in network utilization along with efficiency
obtained by passing messages of size O(| ∪i Si − ∩iSi|). By connecting
reconciliation with network coding, we can provide efficient reconciliation
methods for a number of natural distributed settings.

Key words: set reconciliation; synchronization; multi-party; network coding;
hashing; sketching.

1 Introduction

As users migrate information to cloud storage, the burden of reliability moves
to the cloud provider. Thus many cloud vendors such as Amazon [13] and Azure
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[8] use multiple loosely consistent replicas of user information because of the
high overhead of keeping replicas synchronized at all times. Further, users often
retain copies of their information on laptops, tablets, phones and Personal Dig-
ital Assistants (PDAs); these devices are often disconnected from cloud storage
and thus can diverge from the corresponding copies in the cloud. The situation
naturally grows even more complicated when multiple users have access to infor-
mation, because the number of replicas can increase with the number of users.
Periodically, however copies of information objects must be synchronized or rec-
onciled. One can also view the need for reconciliation at a higher level, such as
for loosely consistent replicas of large databases that may be used for availability
by information providers.

This paper focuses on the basic problem of set reconciliation. In the 2-party
setting, two parties A1 and A2 respectively have (usually very similar) sets S1

and S2, and want to reconcile so both have S1∪S2. Our major contribution is to
extend the recent approach to set reconciliation for two parties using Invertible
Bloom Lookup Tables (IBLTs) to the multi-party setting, where there are three
or more parties holding sets S1, S2, S3, . . . , Sn, and the goal is for all parties to
obtain ∪iSi. This could of course be done by pairwise reconciliations, but we seek
more efficient methods. We first extend the IBLT approach, showing that in the
multi-part setting we can reconcile using messages of size O(|∪iSi−∩iSi|). This
generalizes results from the two-party setting, where the information theoretic
goal has been to send information close to the size of the set difference, rather
than sending information proportional to the size of the sets, as generally the
set difference is very small compared to the set sizes. Our approach has other
advantages, including that one does not need to know the number of parties in
advance. Our main approach here, related to network coding, is to think of the
information stored in the IBLT as corresponding to vectors over a suitable finite
field instead of the binary vectors used in previous work.

We further show that our methodology allows using further network coding
techniques in conjunction with IBLTs, providing additional efficiency in terms
of network utilization. By connecting reconciliation with network coding, we can
provide more efficient reconciliation methods that apply to a number of natural
distributed computing problems. For example, using recent results from gossip
algorithms, we show that multi-party set reconciliation over a network with n
nodes can be done in O(φ−1 log n) rounds of communication with IBLTs, where
φ is the conductance of the network.

While our work can be seen as a specific example of a linear sketch that
has a natural affinity to the network coding approach, we believe it suggests
that other linear sketch-based data structures may also find expanded use by
combining them with ideas from network coding.

1.1 Potential Applications and Related Work

The use of IBLTs for distributed synchronization has already been proposed for
specific applications. For example, recently the Bitcoin community has consid-



ered using IBLTs for scalable synchronization of transactions3 [1,20]. Multi-party
variations would be potentially useful in the Bitcoin setting, where multiple par-
ties may need to track transactions.

In the setting of data centers, as shown in the survey of Bailis and Kings-
bury [2], network errors abound in cost-effective large-scale environments. Thus,
even if we attempt to keep multiple copies of data synchronized, the synchro-
nization will periodically fail along with the network, leaving the problem of
reconciling the differences.

As related work, we note that a different generalization of the set reconcilia-
tion problems, to settings where a certain type of approximate reconciliation is
desired, was recently considered in the database community [9]. However, that
work focuses on the setting of two parties, leaving the question of scaling to
many parties open.

Another related model for problems on distributed data is that of distributed
tracking (see e.g. [23]). Our problem differs from distributed tracking in two
respects: we focus on exact computation (with an arbitrarily small error proba-
bility), and we focus on periodic, as opposed to continuous, computation of the
joint function.

Several further specific applications for set difference structures are given in
[17], including peer-to-peer transactions, deduplication, partition healing, and
synchronizing parallel activations (e.g., of independent crawlers of a search en-
gine). They also discuss why logging as an alternative may have disadvantages
in multiple contexts; an example they provide is for “hot” data items that are
written often and may therefore be in the log multiple times. We refer the reader
to this paper for more information on these examples. Multi-party variations of
IBLT-based synchronization methods could enhance their desirability in these
applications when multiple parties naturally arise. In synchronizing parallel ac-
tivations, for instance, several agents in a distributed system could be gathering
information into local databases in a redundant fashion for near-optimal accu-
racy in the collection process, and then need to reconcile these local databases
into a synchronized whole.

1.2 Background

We briefly summarize known results for the historically common setting of two
parties with direct communication. Consider two parties A1 and A2 with sets
S1 and S2 of keys from a universe U . An important value is the size of the
set difference between S1 and S2, denoted by d = |S1 − S2| + |S2 − S1| =
|(S1∪S2)−(S1∩S2)|. In this setting there are communication-efficient algorithms
when d, or a good approximate upper bound for d, is known. Hence, in some
algorithms for set reconciliation, there are two phases: in a first phase a bound
on d is obtained, which then drives the second phase of the algorithm, where
reconciliation occurs. See [28] for further discussion on this point.

3 See also http://www.reddit.com/r/Bitcoin/comments/2hchs0/scaling_bitcoin_

gavin_begins_work_on_invertible/ for further discussion.

http://www.reddit.com/r/Bitcoin/comments/2hchs0/scaling_bitcoin_gavin_begins_work_on_invertible/
http://www.reddit.com/r/Bitcoin/comments/2hchs0/scaling_bitcoin_gavin_begins_work_on_invertible/


One previous approach to set reconciliation uses characteristic polynomials,
in a manner reminiscent of Reed-Solomon codes [28]. Treating keys as values,
A1 considers the characteristic polynomial

χS1
(Z) =

∏
xi∈S1

(Z − xi),

and similarly A2 considers χS2
(Z). Observe that in the rational function

χS1
(Z)

χS2
(Z)

,

common terms cancel out, leaving a rational function in Z where the sums of the
degrees of the numerator and denominator is at most d. The rational function
can be determined through interpolation by evaluating the function at d + 1
points over a suitably large field; hence, if A1 sends the value of χS1

(Z) at
d + 1 points and A2 sends the value of χS2

(Z) at the same (pre-chosen) d + 1
points, then the two parties can reconcile their set difference. If the range can
be embedded in a field of size q, the total number of bits sent in each direction
would be approximately (d + 1)dlog2 qe. Note that this takes O(d3) operations
using standard Gaussian elimination techniques. Similar ideas underlie similar
results by Juels and Sudan [24]; these ideas can be extended to use other codes,
such as BCH codes, with various computational tradeoffs [15].

Recent methods for set reconciliation have centered on using randomized data
structures, such as the Invertible Bloom Filter or the related but somewhat more
general Invertible Bloom Lookup Table (IBLT) [16,17,19]. For our purposes,
the Invertible Bloom Lookup Table is a randomized data structure storing a
set of keys that supports insertion and deletion operations, as well as a listing
operation that lists the keys in the structure. We review the use of IBLTs for
2-party set reconciliation in Section 2. The main effect of using IBLTs is that
one can give up a small constant factor in the data transmitted to obtain speed
and simplicity that is desirable for many implementations. 2-party reconciliation
using IBLTs can generally be done in linear time, using primarily hashing and
XOR operations. As we show in this paper, the use of IBLTs can also be extended
to multi-party reconciliation.

While the theory set reconciliation among two parties has been widely stud-
ied, there appears to be no substantial prior work (that we are aware of) specif-
ically examining the theory of multi-party reconciliation schemes, although the
question of how to implement them was raised in [29].4 Special cases, such as
rumor spreading (see, e.g., [10,12,14,18,22,34]), where one (or more) parties have
a single key to share with everyone, have been studied, however.

4 Some preliminary results for multi-party settings, also using the IBLT framework but
based on pairwise reconciliations, were provided to us by Goyal and Varghese [21].
Also, after the appearance of this work on the arxiv, multi-party set reconciliation
using characteristic polynomials and repeated pairwise reconciliations was examined
in [3]; their conclusion is that is while it is possible, it currently seems much less
efficient than the methods considered here.



In more practical work, reconciliation among multiple parties has been stud-
ied, often in the context of distributed data distribution, using such techniques
as erasure coding and Bloom filters to enhance performance or reduce the over-
all amount of data transferred (e.g., [7,26,33,17]). However, these works are also
based on pairwise reconciliation, and some do not attempt to achieve data trans-
mission proportional to the size of the set difference, which is our goal here. The
work closest to ours is [17], which also uses Invertible Bloom Filters, but is
focused on pairwise reconciliation.

2 Review: The 2-Party Setting

We review 2-party set reconciliation, using the framework of the Invertible Bloom
Filter/ Invertible Bloom Lookup Table (IBLT) [16,17,19]. More concretely, we
first describe an IBLT and its use for set reconciliation. IBLTs store keys, which
here we will think of as fixed-length bit strings. An IBLT is designed with respect
to a threshold number of keys, t, so that listing will be successful with high
probability if the actual number of keys in the structure at the time of a listing
operation is less than or equal to t. An IBLT B consists of a lookup table T of
m cells initialized with all entries set to 0, where m is O(t), and the constant
factor in the order notation is generally small (between 1 and 2) depending on
the parameters chosen. Like a standard Bloom filter, an IBLT uses a set of k
random hash functions, h1, h2, . . ., hk, to determine where keys are stored.5 For
simplicity, we assume random hash functions here, and for technical reasons we
assume that the hashes of each key yield distinct locations; hence the k hashes
yield a uniform subset of k distinct cells from the

(
m
k

)
possibilities. Alternatively,

this could easily be accomplished, for instance, by splitting the table into k
subtables and having the ith hash function choose a location independently and
uniformly at random in the ith subtable, which would not asymptotically change
the thresholds [4].

The IBLT uses a hash function H that maps keys to hash values in a large
range of size q (where q will be chosen later to bound the probability of error).
The IBLT uses a hash function H that maps keys to hash values in a large range
of size q (where q is a power of 2 that will be chosen later to bound the probability
of error). For the purpose of this paper we assume that H is a fully random hash
function6. Each key x is placed into cells T [h1(x)], T [h2(x)], . . . , T [hk(x)], where
again T is the lookup table that represents the IBLT, as follows.

Each cell T [i] contains an ordered pair

(keySum, keyhashSum) .

5 To obtain structures where m/t is very close to 1, one must use irregular IBLTs,
where different keys utilize a different number of hash functions. We simplify our
description here and use regular IBLTs, where the same number of hash functions
are used for each key. See [19,31] for more discussion.

6 We note that it is possible to show that H(x) = (ax mod p) mod q, where 1 < a <
p − 1 is a random positive integer and p > q2, has the needed properties when all
keys are smaller than q.



The keySum field is the XOR of all the keys that have been mapped to this
cell, and hence must be the size of the keys (in bits). The keyhashSum field is
the XOR of all the hash values H(x) that have been mapped to this cell, and
hence must be the size of the hash H of the keys (in bits). Note that insertion
and deletion is the same operation, as a deletion operation reverses an insertion.
Hence it is possible to delete a key without it first being inserted.

Set reconciliation using IBLTs The above structure yields a set reconciliation
algorithm. Consider two parties Angel and Buffy (or A1 and A2). Angel places his
keys into an IBLT, as does Buffy. They are assumed to share the hash functions hi
and H according to some prior arrangement. They transfer their corresponding
IBLTs, and each then deletes their own keys from the transferred IBLTs. Each
IBLT then contains the set difference, and the set difference is recovered using
the listing process. Alternatively, since deleting and inserting both correspond
to XOR operations, we can say that the parties take the sum of the IBLTs, by
which we simply mean that for each field in each cell, the corresponding values
are summed via the bitwise XOR operation. As long as the set difference size d
is less than the threshold t, recovery will occur with high probability (in t).

As it will help us subsequently, we describe how the listing process functions.
Listing the contents of IBLTs uses a “peeling process”. Peeling here corresponds
to finding a cell with exactly one key contained in it, after the insertion/deletion
steps by Angel and Buffy have effectively removed keys that appear in both sets.
To find a cell with one key, we check the keySum field using keyhashSum. That
is, if the keySum field contains a value z, we check whether keyhashSum contains
the value H(z). If z is the actual key contained in the cell, then H(z) will indeed
appear in the keyhashSum field. If the keySum field contains the XOR of several
keys, then (under our assumption of random hash values for H) there will be a
false positive with probability only 1/q where q is the size of the range of hash
values for H. Let us temporarily assume that there are no false positives.

Once we have a cell with a single recoverable key z, we can remove z from
the structure by computing hi(z) for all i and deleting z from the corresponding
cells using exclusive-or operations to update the keySum and keyhashSum fields.
Removing a key from the structure may yield new keys that can be recovered.
This peeling process has been used in a variety of contexts, such as in erasure-
corrected codes [27]. The peeling process may also fail simply because at some
point there may not be any available cell with only a single recoverable key. It
can be shown that recovery occurs with high probability, assuming a suitably-
sized IBLT is used [19,27,30]. Specifically, the process of peeling corresponds to
finding what is known as the 2-core – the maximal subgraph where all vertices are
adjacent to at least two hyperedges – on a hypergraph where cells correspond
to vertices and each key x corresponds to the hyperedge {h1(x), . . . , hk(x)}.
When k is a constant, the peeling process yields an empty k-core with high
probability whenever the table size m satisfies m > (ck + ε)t for a constant
threshold coefficient ck and constant ε > 0. As noted in [19], the threshold
coefficients, given in Table 1, are close to 1. (Again, they can be made closer to
1 if desired using irregular hypergraph constructions [19,31].)



k 3 4 5 6 7

ck 1.222 1.295 1.425 1.570 1.721

Table 1. Threshold coefficients for the 2-core rounded to four decimal places.

The following theorem, paraphrased from [19], provides the probabilistic
bounds on the failure probability of the peeling process.

Theorem 1. As long as we choose m > (ck + ε)t for some ε > 0, the listing op-
eration (not counting the separate probability of false positives from keyhashSum)
fails with probability O(t−k+2).

We now bound the running time for peeling and error probability from false
positives from the keyhashSum field. Given an IBLT to peel, we can start by
taking a pass over the O(t) cells of the IBLT to find cells where the keySum field
contains a value z and the keyhashSum contains the value H(z). We keep a list
of such cells and start the peeling with these cells. As we peel a cell we update
the keySum and keyhashSum fields of other cells. As we proceed through the
list, we might encounter cells that have already been peeled — these are simply
ignored. Also, while peeling we test cells that we delete keys from to see if now
the keySum and keyhashSum fields match, in which case the cell can be added
to the list of cells to peel. Overall this process clearly takes O(t) time (constant
time per peeling operation), and there are O(t) times that we compare keySum
and keyhashSum fields within a cell, each of which can yield a false positive with
probability 1/q. Under a worst-case assumption that any such error would cause
a listing failure, this gives a total error probability of at most O(t/q) caused by a
false positive in the keyhashSum field. We can choose q according to our desired
error bound.

Adapting to the set difference size If we have an upper bound on d, we can
use this upper bound as the value t for the IBLT, and apply Theorem 1. We
henceforth assume that an upper bound within a (small) constant factor of d
is available throughout this work, as finding an upper bound is essentially an
orthogonal problem. Without an upper bound on d, some additional work may
need to be done, as explored in for [17,28]; we summarize these results and
offer other alternatives as they apply here. Both of [17,28] suggest approaches
that correspond to repeated doubling; if the IBLT size is not sufficient, so that
decoding is unsuccessful, then start over with larger IBLTs. Another option is
to double the IBLT size by adding one additional lower-order bit to each hash
value. Then it suffices to send every odd-numbered cell of the IBLT arrays, since
the even-numbered cells can be found by subtraction from the old IBLT. In
this way, the total number of cells transmitted is the same as if the final IBLT
had been transmitted initially. If the set difference is small but still a constant
fraction of the union of the set sizes, then using min-wise independence or related
techniques [5,11] to approximate the set difference may be suitable. Finally, one
might incrementally improve the IBLT. If each hash function is assigned its



own subarea of cells (as is often how Bloom filters are implemented to allow
parallel lookups into the structure [6], and as noted in [19] is advantageous
for IBLTs), then the parties can incrementally add another hash function by
sending additional information corresponding to the subarea for the additional
hash function.

Keeping count Finally, the IBLT can also contain an optional count field, which
gives a count for the number of keys in a cell. We can increase the count by 1 on
insertion, and decrease it by 1 on deletion. With a count field, a cell can contain
a recoverable key only if the count is 1 or −1. (From Angel’s point of view, after
deleting his keys from Buffy’s IBLT, when the count is −1, it could correspond
to a cell containing a key of his that Buffy does not have.) Note, however, a count
of 1 or −1 does not necessarily correspond to a cell with a recoverable key. For
example, if Angel has two keys Buffy does not hold that hash to the same cell,
and Buffy has one key that Angel does not have that hashes to the same cell,
then after taking the difference of the IBLTs the count will be 1 but there will be
as sum of three keys in the cell. The count field can be useful for implementation
and assists by acting like the sum of another trivial “hash” value for the key (all
keys hash to 1), but it does not replace the keyhashSum field.

Abstraction At an abstract level, we can view the 2-party setting as follows. We
desire a linear sketch (over an appropriate field) taken on sets of keys with the
following properties. Let f(S) denote the sketch of the set S. We desire

– f((S1 ∪ S2)− (S1 ∩ S2)) = f(S1)⊕ f(S2);
– a set X can be efficiently extracted from f(X) under suitable conditions,

which here means that X is sufficiently small;
– the size of the sketch is small, which here means that that if we want to

recover (S1∪S2)− (S1∩S2) then the sketch size is O(|(S1∪S2)− (S1∩S2)|).

We have focused our description on IBLTs as it is a sketch with the required
properties. For multi-party reconciliation, we now show that IBLTs can be ex-
tended by working over an appropriate field to ensure that with multiple sets
S1, S2, . . . , Sn, we have f(∪iSi − ∩iSi) =

∑
i f(S), while still maintaining suit-

able extraction and size properties.

3 The 3-Party Setting

We now describe the extension of IBLTs to provide set reconciliation for three
parties. Starting with the 3-party setting allows us to demonstrate the key ideas
behind this approach and explore its capabilities; we then examine how these
extensions can be used beyond three parties.

To start each of our three parties – Angel, Buffy, and Cordelia (or A1, A2,
and A3) – inserts keys and hashes of keys into the IBLT. (For now, we will not
use a count field.) However, in this setting both the keys and the hashes of keys
are mapped injectively to values in (F3)b for an appropriate b. The particular
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Fig. 1. Set reconciliation with network coding. The relay R receives an IBLT from each
party, and sends back to each party the sum of the other parties’ IBLTs. Each party
just needs to send and receive one message, improving on pairwise set reconciliation
protocols. Alternatively, in the subfigure on the right, in a wireless setting the relay
R can broadcast the sum of all the IBLTs to all parties (denoted by dotted lines),
reducing the number of messages further.

way of mapping to (F3)b does not matter — we could interpret the key and hash
values as number base 3 (at the cost of converting to base 3), or (at the cost of
some space) we could interpret the vector of bits of the key or hash value as a
vector in (F3)b. Now, instead of using XOR in our insertion operation – which is
equivalent to treating keys as b-bit elements of (F2)b – we move to (F3)b (treating
keys as sequences of b trits; similarly, hash values are sequences of trits, perhaps
of a different length). The three IBLT data structures are combined by summing
each of the keySum fields for each cell, as well as summing the keyhashSum fields
for each cell, where the sums are sums of elements in (F3)b. To begin, let us
ignore the issues of the underlying network and assume that all parties obtain
all 3 IBLTs.

Any key that appears in all three sets is canceled out of keySum by the sum-
mation, and similarly the summation of the three hashes of the key is canceled
out of keyhashSum. Hence the number of keys existing in the IBLT after this can-
cellation is | ∪i Si−∩iSi|. If a key x is found in the keySum field and a matching
H(x) is in the keyhashSum field, the key is recovered and removed by subtracting
x and H(x) (or equivalently, adding in 2x and 2H(x) in the appropriate fields).
However, some of these keys may appear duplicated in the IBLT; for example,
if Angel and Buffy have a key x but Cordelia does not, then the sum of the 3
IBLTs may have a cell containing the value 2x in the keySum field and 2H(x) in
the keyhashSum field. We therefore must further modify our method of recovery.
If we see a value z in the keySum field, we must check whether the value H(z)
appears in the keyhashSum field, but we must also check whether 2H(z/2) ap-
pears in the keyhashSum field, in which case we treat it is a verification of z/2
as the key. This increases our error rate due to false positives from keyhashSum
by at most a factor of two, which is still O(t/q). We note that we could reduce
this error rate by instead keeping a count field, which would tell us which one
of the two cases above may apply. Also, we note that when removing this key
from the IBLT, each cell it is hashed to would then have to remove two copies
of the key.



We emphasize that despite this difference, the IBLT listing process works in
the same manner, and in particular has the same threshold size for successful
listing. This is because a key is recovered exactly when a key is the only key
hashed to a cell; the multiplicity of that key within the cell does not affect the
listing process. As the IBLT recovery works in the same manner as in the 2-party
case, we have the following theorem, based on Theorem 1.

Theorem 2. Consider a 3-party reconciliation using IBLTs with k hash func-
tions and a range of q values in the keyhashSum field. As long as we choose
m > (ck + ε)t for some ε > 0, and t ≥ | ∪i Si − ∩iSi|, the 3-way reconciliation
protocol fails with probability O(t−k+2 + t/q).

The 3-party protocol uses m cells, which contain the key and a hash. As long
as the keys are sufficiently large so that the hash is relatively small compared
to the keys, the constant factor from overhead will be small. For 64-bit keys
and 32-bit hashes, for example, the total overhead should be less than a factor
of 2 for k = 3, 4, and less than a factor of 3 for k up to 7. In many settings,
keys or associated stored values can be significantly longer than 64 bits and the
overhead will be much smaller.

3.1 Useful Extensions

Note that from this process each party can determine the number of other parties
(1 or 2) that hold a key they do not possess. It is not hard to add some additional
information so that each party can determine which other party holds the key.
For example, we could add a 3-bit IDs field to each cell; each time Ai adds (or
removes) a key from the IBLT it would toggle the ith bit. Hence the ith bit of
the IDs field would record the parity of the number of keys that Ai has added
to the cell. Recall that when we recover a key from the cell, it should be the
only key in that cell; hence, the bits set to 1 in the IDs field correspond to the
parties that hold that key. (We note that, in fact, having a modulo 3 counter,
and having Ai add i to that counter when adding a key, would in fact suffice
in this case; the details are left to the reader. Our description here generalizes
more readily.)

Another reasonable question one might ask is if one party drops out of the
protocol, can the remaining two parties still reconcile their sets. The answer is
yes. Suppose Cordelia does not participate, so that only Angel and Buffy swap
IBLTs. In this case, when combining IBLTs, Angel adds his own IBLT twice (or
simply multiples every entry in his IBLT by 2 initially), and similarly for Buffy.
That is, each participating party can simply act as though they were two parties
with the same set. This guarantees that any key shared by both parties appears
3 times in the IBLT and is canceled; the IBLT listing can be done as above. Note
that a participating party must know the number of other participating parties,
potentially requiring dropping parties to signal their dropping out in some way.



3.2 Combining with Network Coding

We have thus far assumed that all participating parties get all IBLTs, and hence
it may not be clear that this approach is significantly advantageous when com-
pared to simply performing pairwise reconciliations. However, significant advan-
tages become clearer when we consider the transmission of IBLTs over a network.
Because IBLTs are linear sketches, based solely on addition, linear network cod-
ing methods can be applied.

Specifically, suppose A1, A2, and A3 are communicating over a network via
a relay R. We emphasize that this is a simple setting for illustrative purposes.

In Figure 1 we let I(Ai) represent the IBLT for Ai, and similarly let I(Ai, Aj)
be the sum of the IBLTs for Ai and Aj , and so on. If we sent I(A1) to A2 and A3,
even if the relay duplicates the IBLT it will have to cross 3 links, and similarly
for the other two IBLTs. Hence, the total transmission cost will be 9 IBLTs
worth of data. However, suppose as shown in Figure 1 that all the Bloom filters
I(A1), I(A2), and I(A3) are sent to the relay R, and R then takes sums to send
I(A2, A3) to A1, and similarly for the other parties. Now only 6 IBLTs worth of
data need to be sent, saving 1/3 of the transmission cost. This savings is entirely
similar to standard network coding techniques.

Indeed, in the wireless setting, we could instead have the relay R broadcast
the joint IBLT I(A1, A2, A3) of all parties to all the parties, reducing the num-
ber of messages down to four. This approach is similar to the now well-known
approach of using simple XOR-based network coding in wireless networks [25].

We note that, in this relay setting, instead of using an IBLT with entries
over (F3)b, we could build up a joint IBLT using standard IBLTs by having the
relay do more work. Given IBLTs I(A1) and I(A2), the relay could determine
the set difference from the pair of IBLTs, and correspondingly add elements to
one IBLT to create an IBLT for the union of the sets. Then on the arrival of
I(A3) the relay could again determine the set difference between A1 ∪ A2 and
A3 and use this to build an IBLT for A1 ∪A2 ∪A3. This repeated decoding and
encoding approach is used in [3]. However, this approach requires much more
work from the relay, namely a full decoding for each newly received IBLT, which
should be avoided in many settings. Our work shows, for the first time, that such
additional work can naturally be avoided.

4 Generalizing to n Parties

We now consider the generalization to n parties. We use a field of characteristic
p, where p ≥ n, and we assume keys are mapped injectively (in an arbitrary
way) into (Fp)b, for some b. For convenience we simply take p to be a prime
here, so that keys are mapped to vectors of non-negative integers smaller than p,
and sums are computed modulo p. (And similarly for hash values, for a possibly
different b). For simplicity, the reader might think about b = 1, so keys and
hash values are mapped injectively to integers modulo p. For convenience we
will assume multiplication and division modulo p can be done in constant time;



those who object to this assumption may add an appropriate O(log2 p) factor to
the time bounds (although better bounds may be possible with specially chosen
primes). Let vi denote the representation of I(Ai) as a vector as above.

For efficiency and to reduce the probability of a false positive when using the
keyhashSum to verify the key value in the cell, we keep a counter modulo p in
the count field to track the count of the number of (copies of) keys hashed to a
cell by all parties

We first state a general result that may not appear directly relevant at first
blush. However, this form is useful in that it can be applied to more specific situ-
ations, including not only the straightforward generalization to n parties, where
we consider a sum of n IBLTs, but also situations (motivated by randomized net-
work coding) in which we are given two different linear combinations of IBLTs,
and need to do set reconciliation. The condition under which set reconciliation
succeeds is somewhat technical, and it is possible that some set X of keys cannot
be recovered. But as we will see, for the linear combinations of interest (such
as random linear combinations) the probability that X 6= ∅ can be made small;
in some settings (e.g., when a sum of IBLTs is obtained as in from a relay) the
probability will be 0.

Theorem 3. Consider an n-party reconciliation using IBLTs with k hash func-
tions and a range of q values in the keyhashSum field. Suppose we know two linear
combinations (over (Fp)b) L1 =

∑n
i=1 αivi and L2 =

∑n
i=1 βivi, as well as the

sums of coefficients α =
∑
i αi mod p and β =

∑
i βi mod p, where αi 6= 0 mod p

for all i, and β 6= 0 mod p. Let X = {x ∈ ∪iSi |
∑
i(αi+γβi)1x∈Si

mod p = 0},
where γ = −αβ−1 mod p, and 1E is an indicator random variable for the event
E. As long as we choose m > (ck + ε)t for some ε > 0, and t ≥ | ∪i Si − ∩iSi|,
then from L1 and L2 we can determine all keys from (∪iSi − ∩iSi) − X, with
probability 1−O(t−k+2 + t/q).

Proof. If a key is present in all sets Si then it appears with coefficient α in L1,
and similarly it will appear with coefficient β in L2. From these we can form the
combination of L1 + γL2, where as stated γ = −αβ−1 mod p. The coefficient
of a key that is present in all sets Si is then 0 modulo p and therefore the
key is not present in the IBLT L1 + γL2. Unfortunately, the same is true for
any key that appears exactly in sets Sj for j ∈ T when T has the property
that

∑
i∈T (αi + γβi) = 0 mod p. All other keys can be found with the given

probability using the IBLT recovery process. Note we assume the use of a count
field that tracks the weighted multiplicity of the number of keys hashed to a cell
modulo p (that is, the sum of the coefficients of the keys hashed to that cell), so
that only a single possible key value must be tested in a cell at any time. It is
this use of the count field that limits the additional failure probability to O(t/q).

We also remark that in the case where α = 0, the theorem also holds, but in
fact there is no need for the second linear combination L2 (as γ = 0). In this case,
a key present in all sets has a multiplicity that is 0 mod p, and X corresponds
those keys x that appear exactly in sets Sj for j ∈ T where T has the property
that

∑
i∈T αi = 0 mod p.
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Fig. 2. Set reconciliation example when the parties are connected by a communication
tree, a common case in network communications.

To see how Theorem 3 can be used, we first consider the basic case, where each
party simply wants to find ∪iSi − ∩iSi. We first provide the argument without
using the theorem, and then see how the theorem immediately implies the result.
Let us assume that each party Ai obtains the sum of all IBLTs Z =

∑
i vi, and

of course each party Ai also has Si and hence vi. If p > n, then after Ai obtains
the sum Z of all IBLTs, it computes the sum Z + (p−n)vi, essentially acting as
p−n+ 1 parties with the same set. As before, this means that the contributions
of keys appearing in all sets will cancel out. Each key not appearing in all sets
will have an associated multiplicity of less than n in Z and hence less than p in
Z + (p− n)vi (regardless of whether the key is in Si or not). The algorithm can
then for each cell examine the count a, the keySum y, and the keyhashSum z to
determine if H(a−1y) = a−1z mod p, which is true when the count a corresponds
to a single key. Hence, as before, each key not in all sets can be recovered using
the IBLT recovery process with probability 1−O(t−k+2 + t/q). (For small n one
might choose not to use a count field; one could avoid keeping the count field
and test all possible count values, that is try all values of a from 1 to p− 1. Or
one can be slightly smarter; if Ai contains a single x ∈ Si that hashes to that
cell, then Ai need only test the value of a that satisfies ax = y, and if Ai has
x ∈ Si that hashes to that cell, then only a values from 1 to n − 1 need to be
tested.)

Alternatively, we see that this matches the setting of Theorem 3, with L1 =
Z, L2 = vi, and γ = −n. Computing Z −nvi = Z + (p−n)vi mod p we see that
the set X must be empty, because as we argued above any key not in all sets
has a count that is non-zero modulo p in Z + (p− n)vi. The result follows.



4.1 Extensions

Several of our extensions from Section 3.1 hold in this framework as well. For
example, with an n-bit IDs field one can track the parity of the number of keys
in a cell for each of the n parties, and thereby determine the parties that hold a
recovered key. Also, if some parties do not participate, each participating party
can simply add in additional copies of its own IBLT to arrange for cancellation
if all participating parties hold a key. All that needs to be known for recovery is
the number of participating parties.

In the case of n parties connected through a relay node, we find that by
passing IBLTs through the relay, we can arrange for n-party set reconciliation
using 2n messages on a wired network and n+1 messages on a wireless network,
where the relay broadcasts the sum of the IBLTs to all parties. This improves
over the simplistic natural approach of using n(n − 1) point-to-point messages
to compute all pairwise differences. However, it should be noted, the pairwise
difference messages may in fact be smaller in size, since pairwise set differences
may be smaller than the total set difference.

5 Network Coding and IBLTs

At a high level, our work thus far suggests that, by working over a suitable fi-
nite field, IBLTs can be naturally plugged in to linear network coding schemes
to provide efficient set reconciliation mechanisms, where the message size cor-
responds (up to constant factors) to the generalized set difference. We believe
this correspondence is indeed quite general, and while the broad nature of use
and applications of network coding make it difficult to turn this statement into
a theorem, we provide some sample applications.

5.1 Set Reconciliation on Trees

We first consider set reconciliation among n parties, connected by a communica-
tion network that is a rooted tree with E edges, known in advance. The parties
are at the leaves of the tree. At each time step, each node in the tree can send a
message to each of its neighbors. Let P be the length of the longest path from
a leaf to a root of the tree. We assume in what follows that keys are sufficiently
large so that other overhead (e.g., the keyhashSum field) at most affects the total
size by a constant factor, and that an upper bound on | ∪i Si − ∩iSi| within a
constant factor is known. We claim the following.

Theorem 4. Set reconciliation among n parties on a rooted tree can be per-
formed in 2P time steps with 2E total messages of size O(| ∪i Si − ∩iSi|) with
probability 1−O(t−k+2 +nt/q). Each non-leaf node in the network requires only
O(| ∪i Si − ∩iSi|) storage.

Proof. Each party constructs its IBLT, and sends it up the communication net-
work to the root. Non-leaf nodes excluding the root combine all the IBLTs from



leaves in their subtree, and pass them up to the root. The root gathers all the
IBLTs and sends the union of them back down the communication tree. (See
Figure 2.) Messages are of size O(| ∪i Si − ∩iSi|), and each edge of the tree
carries a single message in each direction. The IBLTs allow each party to recover
all keys with probability 1−O(t−k+2 + t/q). This follows immediately from The-
orem 3, as again we are in the setting where L1 =

∑
i vi and L2 = vi. All of

the IBLTs will be peeling the same set of keys, so the O(t−k+2) term in the
failure probability is common to all n parties. The n parties may have different
counts associated with different cells, however, from each adding in their own
term (p − n)vi, so we take a union bound over the O(t/q) failure probability
associated with a false match from the keyhashSum field over the n parties. (We
note that if n = p, all n parties can use the same IBLT, and this union bound is
avoided.) Because of the way IBLTs are combined only O(| ∪i Si −∩iSi|) space
is required at non-leaf nodes.

5.2 Set Reconciliation via Gossip on General Networks

We now show how gossip spreading techniques (also referred to generally as ru-
mor spreading) allow multi-party set reconciliation over a network inO(φ−1 log n)
rounds of communication, where φ is the conductance of the network, using our
IBLT framework.

In gossip spreading, there are generally two different models [34]. In the
single-message model there is one message at a vertex in a graph with n vertices7,
and the goal is for every vertex to obtain that message. In the multi-message
model, the standard setting is that for some subset of the vertices, each vertex
has a unique message, and all vertices have to obtain all of the messages. With a
PUSH strategy, in each round every node that has a message contacts a random
neighbor, and forwards a single message. The PULL strategy is similar, but
each node without a message contacts a random neighbor and obtains a message
from them. A PUSH-PULL strategy combines both of these operations in every
round. (See, for example, [10,18].) In these models, a vertex can transfer a single
message to another vertex in each round. In the multi-message model, one can use
network coding by having a vertex send a (usually random) linear combination
of the messages it holds at this time, so that messages take (essentially) the
same space, but can offer potentially more useful information. (See, for example,
[12,22].)

Our setting does not exactly match any of these situations. For reconciliation,
we have multiple vertices each with their own message (the IBLT), and we can
combine messages, so we appear to be similar to the multi-message model with
network coding. However, in the network coding setting, the eventual goal is to
solve a collection of linear equations (corresponding to the combinations of mes-
sages received), and in that setting, each new message only provides one more
“degree of freedom”, or one more needed equation, regardless of the component

7 For this problem we follow the standard notation for gossip problems and use n for
the number of vertices.



messages it contains. For set reconciliation, we need not solve such a system
(although that would be one way to solve the problem); we merely need some
appropriate linear combination of all of the IBLTs, as demonstrated in Theo-
rem 3. Also, as we are working in the reconciliation setting, we do not require
that all vertices obtain the reconciled sets, but only those vertices that begin
with a set initially.

Because of this, we may more naturally think of the problem as a collection of
single-message problems running in parallel, as we now describe. Our approach
is as follows. We have a ≤ n parties A1, . . . , Aa with sets S1, . . . , Sa and corre-
sponding IBLTs I(S1), . . . , I(Sa). For convenience, without loss of generality we
provide the argument where a = n, as fewer parties with messages only makes
things easier. (Or we may think of parties without a message as having a null
message.) Parties can use whatever single-message gossiping algorithm is avail-
able. Messages in this setting correspond to random mixtures of IBLTs. That is,
here we again think of the IBLT as a vector of entries in (Fp)b for a suitably large
prime p. (Here p will need to be larger than previously to obtain a low failure
probability, as we see below.) A message will consist of a linear combination of
such vectors ∑

i∈[n]

αivi,

where vi is the IBLT vector for the ith party and αi is a coefficient (modulo p).
Let the vector of the jth party after ` rounds of communication be given by αij`,
i = 1, . . . , n. Our goal is for each party j to obtain a vector

∑
i∈[n] αijLvj at round

L where αijL 6= 0 for all i. At that point, as a special case of Theorem 3, the
jth party can reconcile using the combined IBLT by adding (p−

∑
i∈[n] αijL)vj

to this vector, thereby “canceling out” any key in the intersection of the sets.
To bound the probability that the set X of non-recovered keys is nonempty, we
first need to describe how the coefficients come about.

The protocol runs as follows. Each vertex holds one linear combination of
IBLTs at any time; after round number ` party j stores∑

i∈[n]

αij`vi

as well as the coefficient sum αj` =
∑
i∈[n] αij`. To send a message, a party j

chooses a random κj` 6= 0 modulo p and sends

κj`
∑
i∈[n]

αij`vi.

together with the corresponding coefficient sum κj`αj` mod p. Each party re-
ceiving a message simply adds it to its current message. The probability of ever
“zeroing out” a coefficient using this approach is negligible for suitably large p.
To see this, notice that each coefficient αij` is a (non-zero) multilinear polyno-
mial of degree at most ` of the random multipliers κj` applied to each message.
This implies that the probability that αij` = 0 is O(`/p), by the Schwartz-Zippel



lemma [32,35]. Similarly, the probability for each set T that
∑
i∈T αij` assumes

a given value is O(`/p), implying that X is empty with probability 1−O(t`/p)
for each party.

Now we examine the protocol from the point of view of a single message. For
a single message, the protocol behaves exactly as the single-message protocol;
the fact that other IBLTs may be piggy-backing along in a shared message does
not make any difference. Hence, we can treat this as multiple single-message
problems running in parallel, and apply a union bound on the failure prob-
ability. Generally, standard results for single-message problems come with an
exponentially decreasing tail bound for the probability of not finishing after a
given number of rounds. Assuming this, an additive O(log n) steps over a stan-
dard single-message result are sufficient to guarantee, via union bound, that the
n parallel problems all complete.

As a specific example, we can consider the best current results on the stan-
dard PUSH-PULL protocol for gossip spreading [18]. Let φ be the conductance
of a communications graph G with n vertices, where a of the n vertices wish to
reconcile their sets. We can prove the following theorem.

Theorem 5. Set reconciliation on a graph of n vertices with a = O(n) par-
ties having sets to reconcile can be accomplished in time O(φ−1 log n) using the
standard randomized PUSH-PULL protocol with messages of size

O(| ∪i Si − ∩iSi|)

with success probability

1−O(t−k+2 + nt/q + ntL/p+ n2L/p+ n−β)

for any constant β > 0.

Proof. As mentioned without loss of generality we take the case where a = n.
We choose a suitable stopping time L = O(φ−1 log n) based on the choice of the
constant β that would be suitable for n parallel versions of the single-message
PUSH-PULL gossip protocol to successfully complete with high probability, as
guaranteed by Theorem 1.1 of [18].

We now apply Theorem 3. From our discussion above, we have that after L
rounds the ith party will store L1 that is a linear combination

∑
i∈[n] αijLvi, as

well as L2 = vi. Here the αijL are all non-zero with high probability because
of the use of random coefficients as discussed above; this probability it at most
O(n2L/p) by the union bound as there are n2 coefficients and each is 0 with
probability at most O(L/p).

We further claim the set X is empty for all parties with high probability,
also because of the use of random coefficients. To see this, consider any key x in
∪iSi −∩iSi. For x to not be recoverable by the IBLT by the ith party, it would
require that

∑
j∈T αijL = 0 mod p, where T is again the set of parties that have

x as a key. This happens with probability at most O(tL/p) as discussed above.
Hence, by a union bound over parties, the probability that this happens over all
parties is at most O(ntL/p).



We therefore obtain full recovery for all parties using randomized PUSH-
PULL, with high probability. Note that again we must take into account that
each party has different coefficients in their IBLT, and hence one must apply
a union bound to cover the possibility of false positives from the keySum and
keyhashSum fields over all IBLTs. However, the recovery process will be the same
for all IBLTs, since they all involve the same keys. Our final probability bound
includes this accounting.

5.3 Experiments

We briefly describe some experiments designed to test the gossip algorithms
approach. We emphasize that the experiments were meant as “proof-of-concept”,
and not an extensive experimental test.8

We choose as our test graphs random graphs where each edge is included
independently with probability 2 lnn

n ; this is sufficient to guarantee the graph is
connected (with high probability). For our experiments, each each node is a party
to the protocol, and each party’s set is simply one element, with all sets being
distinct. We use IBLTs of 2n cells (more than needed) to ensure listing succeeds
with high probability. The choice of sets does not significantly impact the failure
probability. Every time a party receives a message, it adds the corresponding
IBLT multiplied by a random multiplier into its linear combination of IBLTs.
We use the PUSH-PULL protocol as described previously. We also determined
with preliminary experiments the number of rounds needed to ensure that all
parties would receive the information held from all parties with high probability,
and used this many rounds. By doing so, we limit our failures to resulting from
the zeroing out of coefficients of the linear combination of IBLTs. This failure
probability therefore corresponds to the O(ntL/p+n2L/p) term from Theorem 5.

Table 2. Success Rate of Listing Keys (Averaged over 1000 trials) with p = 1000000007

# Parties

%
Retrieving
All
Msgs

%
Missing
1 Msg

%
Missing
>1 Msg

#
Retrieving
All Msgs

#
Missing
1 Msg

#
Missing
>1 Msg

10 100.00% 0.00% 0.00% 10000 0 0

20 100.00% 0.00% 0.00% 20000 0 0

40 100.00% 0.00% 0.00% 40000 0 0

80 100.00% 0.00% 0.00% 80000 0 0

160 100.00% 0.00% 0.00% 160000 0 0

320 100.00% 0.00% 0.00% 320000 0 0

640 100.00% 0.00% 0.00% 640000 0 0

1280 100.00% 0.00% 0.00% 1279999 1 0

8 These experiments were performed by Marco Gentili, who we thank for allowing
their use in this paper.



Table 2 shows the success rate for listing keys using p = 1000000007, averaged
over 1000 trials. All keys for n up to 640 were reconciled; for n = 1280, one key
from one party is not recovered in one trial. (Various backup measures could
be used to easily handle such rare cases.) Note that this value of p would fit
into a 32-bit integer and is not unreasonable for calculations. Other experiments
with smaller values of p shows that the failures occur at a rate roughly inversely
proportional to p, as suggested by Theorem 5.

6 Conclusion

Previous solutions for set reconciliation, based primarily on Reed-Solomon codes,
have not (as far as we are aware) been generalized to the multi-party setting,
and it is not immediately clear how to do so. We have shown here that methods
based on Invertible Bloom Lookup Tables, which require additional space but
only linear time, generalize naturally, and further they do so in a way that allows
the application of network-coding based techniques. Hence, by utilizing network
coding methods, we can obtain high efficiency in terms of the number of network
messages required, as well as small messages because IBLTs and combinations of
IBLTs have length proportional to the generalized set difference. While we ex-
pect our approach might be improved further, providing better space utilization
or smaller probability of error either by theoretical improvements or by careful
implementation, we believe this work represents an important step in establish-
ing more practical solutions to the multi-party set reconciliation problem than
approaches based on pairwise interactions.

There are, of course, quite a number of linear sketches in the literature be-
yond IBLTs, and combining such sketches is a fairly common technique. Our
work emphasizes how IBLTs can naturally lead to reconciliation algorithms that
take advantage of methods based on network coding. It would be very interest-
ing if a general statement formalizing this connection more concretely could be
developed, or, alternatively, if we can find other cases where the utility of linear
sketches can be increased by applying network coding techniques to expand their
capabilities or efficiency.

We observe that in settings where point-to-point messages can be transmit-
ted more efficiently than by broadcasting, there is potential in some cases to
decrease the total size of messages sent and received by each party. For example,
this is the case when each set Si lacks t elements from ∪iSi, and each of these
elements is present in all other sets. Then running a single pairwise set reconcil-
iation protocol with point-to-point messages of size O(t) suffices for each party.
However, the IBLT would require each party to send and receive messages of size
O(tn). Of course, in this example the parties are making use of the knowledge
that all other parties already hold the missing items, but it shows that there
are settings where IBLTs will not be optimal. More generally, we leave it as an
open problem to explore the possible trade-offs in using or combining various
set reconciliation protocols in additional settings.
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