479 research outputs found

    Impact of polarization on the intrinsic cosmic microwave background bispectrum

    Get PDF
    We compute the cosmic microwave background (CMB) bispectrum induced by the evolution of the primordial density perturbations, including for the first time both temperature and polarization using a second-order Boltzmann code. We show that including polarization can increase the signal-to-noise by a factor 4 with respect to temperature alone. We find the expected signal-to-noise for this intrinsic bispectrum of S=N ¼ 3.8; 2.9; 1.6 and 0.5 for an ideal experiment with an angular resolution of lmax ¼ 3000, the proposed CMB surveys PRISM and COrE, and Planck’s polarized data, respectively; the bulk of this signal comes from E-mode polarization and from squeezed configurations. We discuss how CMB lensing is expected to reduce these estimates as it suppresses the bispectrum for squeezed configurations and contributes to the noise in the estimator. We find that the presence of the intrinsic bispectrum will bias a measurement of primordial non-Gaussianity of local type by fintr NL ¼ 0.66 for an ideal experiment with lmax ¼ 3000. Finally, we verify the robustness of our results by recovering the analytic approximation for the squeezed-limit bispectrum in the general polarized case

    The Intrinsic Matter Bispectrum in Λ\LambdaCDM

    Get PDF
    We present a fully relativistic calculation of the matter bispectrum at second order in cosmological perturbation theory assuming a Gaussian primordial curvature perturbation. For the first time we perform a full numerical integration of the bispectrum for both baryons and cold dark matter using the second-order Einstein-Boltzmann code, SONG. We review previous analytical results and provide an improved analytic approximation for the second-order kernel in Poisson gauge which incorporates Newtonian nonlinear evolution, relativistic initial conditions, the effect of radiation at early times and the cosmological constant at late times. Our improved kernel provides a percent level fit to the full numerical result at late times for most configurations, including both equilateral shapes and the squeezed limit. We show that baryon acoustic oscillations leave an imprint in the matter bispectrum, making a significant impact on squeezed shapes.Comment: Accepted for publication in JCAP. 17 pages + appendices, 6 figures. Code available at GitHub: http://github.com/coccoinomane/son

    Non-linear Evolution of Matter Power Spectrum in Modified Theory of Gravity

    Get PDF
    We present a formalism to calculate the non-linear matter power spectrum in modified gravity models that explain the late-time acceleration of the Universe without dark energy. Any successful modified gravity models should contain a mechanism to recover General Relativity (GR) on small scales in order to avoid the stringent constrains on deviations from GR at solar system scales. Based on our formalism, the quasi non-linear power spectrum in the Dvali-Gabadadze-Porratti (DGP) braneworld models and f(R)f(R) gravity models are derived by taking into account the mechanism to recover GR properly. We also extrapolate our predictions to fully non-linear scales using the Parametrized Post Friedmann (PPF) framework. In f(R)f(R) gravity models, the predicted non-linear power spectrum is shown to reproduce N-body results. We find that the mechanism to recover GR suppresses the difference between the modified gravity models and dark energy models with the same expansion history, but the difference remains large at weakly non-linear regime in these models. Our formalism is applicable to a wide variety of modified gravity models and it is ready to use once consistent models for modified gravity are developed.Comment: 25 pages, 8 figures, comparison to N-body simulations in DGP added, published in PR

    Characterising Vainshtein Solutions in Massive Gravity

    Full text link
    We study static, spherically symmetric solutions in a recently proposed ghost-free model of non-linear massive gravity. We focus on a branch of solutions where the helicity-0 mode can be strongly coupled within certain radial regions, giving rise to the Vainshtein effect. We truncate the analysis to scales below the gravitational Compton wavelength, and consider the weak field limit for the gravitational potentials, while keeping all non-linearities of the helicity-0 mode. We determine analytically the number and properties of local solutions which exist asymptotically on large scales, and of local (inner) solutions which exist on small scales. We find two kinds of asymptotic solutions, one of which is asymptotically flat, while the other one is not, and also two types of inner solutions, one of which displays the Vainshtein mechanism, while the other exhibits a self-shielding behaviour of the gravitational field. We analyse in detail in which cases the solutions match in an intermediate region. The asymptotically flat solutions connect only to inner configurations displaying the Vainshtein mechanism, while the non asymptotically flat solutions can connect with both kinds of inner solutions. We show furthermore that there are some regions in the parameter space where global solutions do not exist, and characterise precisely in which regions of the phase space the Vainshtein mechanism takes place.Comment: 21 pages, 7 figures, published versio

    New Host and Ocean Records for the Parasitic Copepod Bobkabata kabatabobbus (Lernaeosoleidae: Poecilostomatoida)

    Get PDF
    The parasitic copepod Bobkabata kabatabobbus Hogans & Benz is reported for the first time from the Pacific Ocean and from the darkfin sculpin, Malacocottus zonurus (Psychrolutidae: Scorpaeniformes). Based on five specimens, several morphological features are reported for the first time for B. kabatabobbus, including a second protuberance on the cephalothorax, a pair of vestigial legs on the neck, and two dark-staining sclerites on the trunk that may represent body segment boundaries or interpodal bars

    Gravitational backreaction of anti-D branes in the warped compactification

    Full text link
    We derive a low-energy effective theory for gravity with anti-D branes, which are essential to get de Sitter solutions in the type IIB string warped compactification, by taking account of gravitational backreactions of anti-D branes. In order to see the effects of the self-gravity of anti-D branes, a simplified model is studied where a 5-dimensional anti-de Sitter ({\it AdS}) spacetime is realized by the bulk cosmological constant and the 5-form flux, and anti-D branes are coupled to the 5-form field by Chern-Simon terms. The {\it AdS} spacetime is truncated by introducing UV and IR cut-off branes like the Randall-Sundrum model. We derive an effective theory for gravity on the UV brane and reproduce the familiar result that the tensions of the anti-D branes give potentials suppressed by the forth-power of the warp factor at the location of the anti-D branes. However, in this simplified model, the potential energy never inflates the UV brane, although the anti-D-branes are inflating. The UV brane is dominated by dark radiation coming from the projection of the 5-dimensional Weyl tensor, unless the moduli fields for the anti-D branes are stabilized. We comment on the possibility of avoiding this problem in a realistic string theory compactification.Comment: typos corrected, 11 pages, 3 figure

    Testing Higgs models via the H±WZH^\pm W^\mp Z vertex by a recoil method at the International Linear Collider

    Full text link
    In general, charged Higgs bosons H±H^\pm appear in non-minimal Higgs models. The H±WZH^\pm W^\mp Z vertex is known to be related to the violation of the global symmetry (custodial symmetry) in the Higgs sector. Its magnitude strongly depends on the structure of the exotic Higgs models which contain higher isospin SU(2)LSU(2)_L representations such as triplet Higgs bosons. We study the possibility of measuring the H±WZH^\pm W^\mp Z vertex via single charged Higgs boson production associated with the W±W^\pm boson at the International Linear Collider (ILC) by using the recoil method. The feasibility of the signal e+eH±Wνjje^+e^-\to H^\pm W^\mp \to \ell \nu jj is analyzed assuming the polarized electron and positron beams and the expected detector performance for the resolution of the two-jet system at the ILC. The background events can be reduced to a considerable extent by imposing the kinematic cuts even if we take into account the initial state radiation. For a relatively light charged Higgs boson whose mass mH±m_{H^\pm} is in the region of 120-130 GeV <mH±<mW+mZ< m_{H^\pm} < m_W+m_Z, the H±WZH^\pm W^\mp Z vertex would be precisely testable especially when the decay of H±H^\pm is lepton specific. The exoticness of the extended Higgs sector can be explored by using combined information for this vertex and the rho parameter.Comment: 22 pages, 23 figure

    Appearance of classical Mixmaster Universe from the No-Boundary Quantum State

    Full text link
    We investigate the appearance of the classical anisotropic universe from the no-boundary quantum state according to the prescription proposed by Hartle, Hawking and Hertog. Our model is homogeneous, anisotropic, closed universes with a minimally coupled scalar field and cosmological constant. We found that there are an ensemble of classical Lorentzian histories with anisotropies and experience inflationary expansion at late time, and the probability of histories with anisotropies are lower than isotropic histories. Thus the no-boundary condition may be able to explain the emergence of our universe. If the classical late time histories are extended back, some become singular by the existence of initial anisotropies with large accelerations. However we do not find any chaotic behavior of anisotropies near the initial singularity.Comment: 14 pages, 14 figure

    Probing Cooper Pairs with Franson Interferometry

    Full text link
    A setup based on the Franson optical interferometer is analyzed, which allows us to detect the coherence properties of Cooper pairs emerging via tunneling from a superconductor in contact with two one-dimensional channels. By tuning the system parameters we show that both the internal coherence of the emitted Cooper pairs, which is proportional to Pippard's length, and the de Broglie wavelength of their center-of-mass motion can be measured via current-current correlation measurements.Comment: 9 pages, 3 figure

    Strong ice-ocean interaction beneath Shirase Glacier Tongue in East Antarctica

    Get PDF
    Mass loss from the Antarctic ice sheet, Earth’s largest freshwater reservoir, results directly in global sea-level rise and Southern Ocean freshening. Observational and modeling studies have demonstrated that ice shelf basal melting, resulting from the inflow of warm water onto the Antarctic continental shelf, plays a key role in the ice sheet’s mass balance. In recent decades, warm ocean-cryosphere interaction in the Amundsen and Bellingshausen seas has received a great deal of attention. However, except for Totten Ice Shelf, East Antarctic ice shelves typically have cold ice cavities with low basal melt rates. Here we present direct observational evidence of high basal melt rates (7–16 m yr−1) beneath an East Antarctic ice shelf, Shirase Glacier Tongue, driven by southward-flowing warm water guided by a deep continuous trough extending to the continental slope. The strength of the alongshore wind controls the thickness of the inflowing warm water layer and the rate of basal melting
    corecore