570 research outputs found

    Fluorine abundances in planetary nebulae

    Full text link
    We have determined fluorine abundances from the F II 4789 and F IV 4060 nebular emission lines for a sample of planetary nebulae (PNe). Our results show that fluorine is generally overabundant in PNe, thus providing new evidence for the synthesis of fluorine in asymptotic giant branch (AGB) stars. [F/O] is found to be positively correlated with the C/O abundance ratio, in agreement with the predictions of theoretical models of fluorine production in thermally pulsing AGB stars. A large enhancement of fluorine is observed in the Wolf-Rayet PN NGC 40, suggesting that high mass-loss rates probably favor the survival of fluorine.Comment: 4 pages, 3 figures, accepted for publication in ApJ Letter

    Investigation for the puzzling abundance pattern of the neutron-capture elements in the ultra metal-poor star: CS 30322-023

    Get PDF
    The s-enhanced and very metal-poor star CS 30322-023 shows a puzzling abundance pattern of the neutron-capture elements, i.e. several neutron-capture elements such as Ba, Pb etc. show enhancement, but other neutron-capture elements such as Sr, Eu etc. exhibit deficient with respect to iron. The study to this sample star could make people gain a better understanding of s- and r-process nucleosynthesis at low metallicity. Using a parametric model, we find that the abundance pattern of the neutron-capture elements could be best explained by a star that was polluted by an AGB star and the CS 30322-023 binary system formed in a molecular cloud which had never been polluted by r-process material. The lack of r-process material also indicates that the AGB companion cannot have undergone a type-1.5 supernova, and thus must have had an initial mass below 4.0M⊙_\odot, while the strong N overabundance and the absence of a strong C overabundance indicate that the companion's initial mass was larger than 2.0M⊙_\odot. The smaller s-process component coefficient of this star illustrates that there is less accreted material of this star from the AGB companion, and the sample star should be formed in the binary system with larger initial orbital separation where the accretion-induced collapse (AIC) mechanism can not work.Comment: 13 pages, 2 figure

    The first next-generation sequencing approach to the mitochondrial phylogeny of African monogenean parasites (Platyhelminthes: Gyrodactylidae and Dactylogyridae)

    Get PDF
    Abstract Background Monogenean flatworms are the main ectoparasites of fishes. Representatives of the species-rich families Gyrodactylidae and Dactylogyridae, especially those infecting cichlid fishes and clariid catfishes, are important parasites in African aquaculture, even more so due to the massive anthropogenic translocation of their hosts worldwide. Several questions on their evolution, such as the phylogenetic position of Macrogyrodactylus and the highly speciose Gyrodactylus, remain unresolved with available molecular markers. Also, diagnostics and population-level research would benefit from the development of higher-resolution genetic markers. We aim to offer genetic resources for work on African monogeneans by providing mitogenomic data of four species (two belonging to Gyrodactylidae, two to Dactylogyridae), and analysing their gene sequences and gene order from a phylogenetic perspective. Results Using Illumina technology, the first four mitochondrial genomes of African monogeneans were assembled and annotated for the cichlid parasites Gyrodactylus nyanzae, Cichlidogyrus halli, Cichlidogyrus mbirizei (near-complete mitogenome) and the catfish parasite Macrogyrodactylus karibae (near-complete mitogenome). Complete nuclear ribosomal operons were also retrieved, as molecular vouchers. The start codon TTG is new for Gyrodactylus and for Dactylogyridae, as is the incomplete stop codon TA for Dactylogyridae. Especially the nad2 gene is promising for primer development. Gene order was identical for protein-coding genes and differed between the African representatives of these families only in a tRNA gene transposition. A mitochondrial phylogeny based on an alignment of nearly 12,500 bp including 12 protein-coding and two ribosomal RNA genes confirms that the Neotropical oviparous Aglaiogyrodactylus forficulatus takes a sister group position with respect to the other gyrodactylids, instead of the supposedly ‘primitive’ African Macrogyrodactylus. Inclusion of the African Gyrodactylus nyanzae confirms the paraphyly of Gyrodactylus. The position of the African dactylogyrid Cichlidogyrus is unresolved, although gene order suggests it is closely related to marine ancyrocephalines. Conclusions The amount of mitogenomic data available for gyrodactylids and dactylogyrids is increased by roughly one-third. Our study underscores the potential of mitochondrial genes and gene order in flatworm phylogenetics, and of next-generation sequencing for marker development for these non-model helminths for which few primers are available

    Mass Transfer by Stellar Wind

    Full text link
    I review the process of mass transfer in a binary system through a stellar wind, with an emphasis on systems containing a red giant. I show how wind accretion in a binary system is different from the usually assumed Bondi-Hoyle approximation, first as far as the flow's structure is concerned, but most importantly, also for the mass accretion and specific angular momentum loss. This has important implications on the evolution of the orbital parameters. I also discuss the impact of wind accretion, on the chemical pollution and change in spin of the accreting star. The last section deals with observations and covers systems that most likely went through wind mass transfer: barium and related stars, symbiotic stars and central stars of planetary nebulae (CSPN). The most recent observations of cool CSPN progenitors of barium stars, as well as of carbon-rich post-common envelope systems, are providing unique constraints on the mass transfer processes.Comment: Chapter 7, in Ecology of Blue Straggler Stars, H.M.J. Boffin, G. Carraro & G. Beccari (Eds), Astrophysics and Space Science Library, Springe

    A Few Binary Star Puzzles for Roberto on the Occasion of His Birthday

    Full text link
    Radial velocity observations accumulated during the past 16 years are used to derive a preliminary orbit for the CEMP star CS 22881-036. The velocity amplitude is very small. No velocity variation is found for three additional CEMP stars observed over roughly the same time interval. Searches for companions of two CEMP double-lined spectroscopic binaries and of the RR Lyrae star TY Gruis are reviewed. A disparity between the period distribution of disk carbon-star binaries and that of their parent population of normal binaries can be attributed qualitatively to a decline in accreted mass with increasing binary separation. Finally, possible reasons for failure to find expected companions of CEMP stars are discussed.Comment: 12 pages, 5 figures, Gallino Birthday Worksho

    Mass ratio from Doppler beaming and R{\o}mer delay versus ellipsoidal modulation in the Kepler data of KOI-74

    Full text link
    We present a light curve analysis and radial velocity study of KOI-74, an eclipsing A star + white dwarf binary with a 5.2 day orbit. Aside from new spectroscopy covering the orbit of the system, we used 212 days of publicly available Kepler observations and present the first complete light curve fitting to these data, modelling the eclipses and transits, ellipsoidal modulation, reflection, and Doppler beaming. Markov Chain Monte Carlo simulations are used to determine the system parameters and uncertainty estimates. Our results are in agreement with earlier studies, except that we find an inclination of 87.0 \pm 0.4\degree, which is significantly lower than the previously published value. We find that the mass ratio derived from the radial velocity amplitude (q=0.104 \pm 0.004) disagrees with that derived from the ellipsoidal modulation (q=0.052 \pm 0.004} assuming corotation). This was found before, but with our smaller inclination, the discrepancy is even larger than previously reported. Accounting for the rapid rotation of the A-star is found to increase the discrepancy even further by lowering the mass ratio to q=0.047 \pm 0.004. These results indicate that one has to be extremely careful in using the amplitude of an ellipsoidal modulation signal in a close binary to determine the mass ratio, when a proof of corotation is not firmly established. The radial velocities that can be inferred from the detected Doppler beaming in the light curve are found to be in agreement with our spectroscopic radial velocity determination. We also report the first measurement of R{\o}mer delay in a light curve of a compact binary. This delay amounts to -56 \pm 17 s and is consistent with the mass ratio derived from the radial velocity amplitude. The firm establishment of this mass ratio at q=0.104 \pm 0.004 leaves little doubt that the companion of KOI-74 is a low mass white dwarf.Comment: 9 pages, 7 figures, 2 tables; accepted for publication in MNRA

    The wonderful complexity of the Mira AB system

    Get PDF
    We have mapped the CO(3-2) line emission around the Mira AB system at 0.5 resolution using the Atacama Large Millimeter/submillimeter Array (ALMA). The CO map shows amazing complexity. The circumstellar gas has been shaped by different dynamical actors during the evolution of the system and several morphological components can be identified. The companion is marginally resolved in continuum emission and is currently at 0.487±\pm0.006 separation. In the main line component, centered on the stellar velocity, spiral arcs around Mira A are found. The spiral appears to be relatively flat and oriented in the orbital plane. An accretion wake behind the companion is clearly visible and the projected arc separation is of order 5''. In the blue wing of the line emission, offset from the main line, several large (∌\sim5-10''), opposing arcs are found. We tentatively suggest that this structure is created by the wind of Mira B blowing a bubble in the expanding envelope of Mira A.Comment: Letter accepted in A&

    Fluorine Abundance Variations in Red Giants of the Globular Cluster M4 and Early-Cluster Chemical Pollution

    Full text link
    We present fluorine abundances in seven red-giant members of the globular cluster M4 (NGC 6121). These abundances were derived from the HF (1--0) R9 line at 2.3357 microns in high-resolution infrared spectra obtained with the Phoenix spectrograph on Gemini-South. Many abundances in the target stars have been studied previously, so that their overall abundance distributions are well-mapped. The abundance of fluorine is found to vary by more than a factor of 6, with the F-19 variations being correlated with the already established oxygen variations, and anti-correlated with the sodium and aluminium variations. In this paper we thus add fluorine to the list of elements known to vary in globular cluster stars, and this provides further evidence that H-burning is the root cause of the chemical inhomegeneities. The fact that F-19 is found to decrease in the M4 stars, as the signature of H-burning appears, indicates that the polluting stars must have masses greater than about 3.5 solar masses, as less massive stars than this should produce, not destroy, fluorine.Comment: Astrophysical Journal, accepted and in-pres

    The Multiple Origin of Blue Straggler Stars: Theory vs. Observations

    Full text link
    In this chapter we review the various suggested channels for the formation and evolution of blue straggler stars (BSSs) in different environments and their observational predictions. These include mass transfer during binary stellar evolution - case A/B/C and D (wind Roche-lobe overflow) mass transfer, stellar collisions during single and binary encounters in dense stellar cluster, and coupled dynamical and stellar evolution of triple systems. We also explore the importance of the BSS and binary dynamics in stellar clusters. We review the various observed properties of BSSs in different environments (halo and bulge BSSs, BSSs in globular clusters and BSSs in old open clusters), and compare the current observations with the theoretical predictions for BSS formation. We try to constrain the likely progenitors and processes that play a role in the formation of BSSs and their evolution. We find that multiple channels of BSS formation are likely to take part in producing the observed BSSs, and we point out the strengths and weaknesses of each the formation channel in respect to the observational constraints. Finally we point out directions to further explore the origin of BSS, and highlight eclipsing binary BSSs as important observational tool.Comment: Chapter 11, in Ecology of Blue Straggler Stars, H.M.J. Boffin, G. Carraro & G. Beccari (Eds), Astrophysics and Space Science Library, Springe
    • 

    corecore